
AI611µ Word Prediction with
N-Grams Model using Python

Session 2

N-Grams Model Training
and Model Evaluation

Sébastien Combéfis Winter 2020

This work is licensed under a Creative Commons Attribution – NonCommercial –
NoDerivatives 4.0 International License.

Objectives

How to train an N-grams model from and for a given corpus?

Computing the N-grams probabilities from statistics

How to evaluate a trained N-grams model?

Testing the quality of the obtained probabilities for a test set

How to improve N-grams models by smoothing them?

Tackling sparse data that can result from bad/small corpus

3

Model Training

Berkeley Restaurant Project

Dialogue system that answered questions about restaurants

From a database of restaurants in Berkeley, California

A sample of the 9332 user queries in the database

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

5

Corpus Statistics

Bigram counts from a selected set of eight words

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Unigram count for the eight selected words from the corpus

i want to eat chinese food lunch spend

2533 927 2417 746 158 1093 341 278

6

Bigram Probabilities

Bigram probabilities obtained after normalisation

Obtained by dividing the bigram matrix by the unigram vector

Bigram model captures several linguistic phenomena

Strictly syntactic facts such as a verb comes after a pronoun

Cultural facts such as low probability of asking English food

i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

7

Sentence Probability

Two symbols to identify the beginning and end of sentence

For example, we have P(i|<s>) = 0.25 and P(</s>|food) = 0.68

Possible to compute the probability of a sentence

Assuming P(food|english) = 0.5 and P(english|want) = 0.0011

We have P(<s>i want english food</s>)
= P(i|<s>)P(want|i)P(english|want)P(food|english)P(</s>|food)
= 0.25× 0.33× 0.0011× 0.5× 0.68
= 0.000031

8

Unknown Word

Closed vocabulary when size of vocabulary known in advance

We know all the words that can occur, in the test set

Sometimes there are unknown words (OOV out of vocabulary)

The OOV rate measure how many such words are present

Addition of a special <UNK> pseudo-word

Special training method when in an open vocabulary setting

Replace words not in a chosen vocabulary by <UNK>

Replace the first occurence of every word type by <UNK>

9

Model Evaluation

Training and Test Set

Probabilities of an N-grams model trained from a corpus

With sufficient training data, trigram models are better

Statistical model trained on some data, tested on others

Training statistical parameters of the model on training set

Computing probabilities on the test set

Training-and-testing paradigm to compare N-grams models

An N-grams model can be evaluated with the perplexity

11

Test Set

Important to separate the training set from the test set

Training on the test set can result in biased models

Possible to have other divisions of data

Held-out set to compute other parameters of the model

Possible to have multiple test set to avoid tuning to one

Development test set compared to a fresh test set

Keeping a large training set important to train a good model

80% for training, 10% for development and 10% for test

12

N-Grams Sensitivity

N-grams model is very dependent on the training corpus

Probabilities often encode specific facts about the training corpus

Better job of modelling the training corpus as N increases

Can be observed by randomly generating sentences with N ↑

Examples with the Wall Street Journal corpus (40e6 words)

1 Months the my and issue of year foreign new exchange’s...

2 Last December through the way to preserve the Hudson...

3 They also point to ninety nine point six billion dollars from two...

13

Evaluating N-Grams

Extrinsic evaluation for end2end evaluation of language model

Embed it in application and measure total performance of it

Also referred to as an in vivo evaluation

Only way to know if improvement really help the task at hand

Independent quality measure with intrinsic evaluation

Quickly evaluate potential improvements in a language model

Often correlates with extrinsic improvements

14

Perplexity Measure

Perplexity measure best prediction on test set W = w1w2...wN

PP(W) = P(w1w2...wN)− 1
N = N

√
1

P(w1w2...wN)

Perplexity can be computed thanks to the chain rule

PP(W) = N

√√√√ N∏
i=1

1
P(wi |w1...wi−1)

Perplexity is simplified in the case of bigram model

PP(W) = N

√√√√ N∏
i=1

1
P(wi |wi−1)

15

Perplexity Properties

The higher the conditional probability, the lower the perplexity

Minimising perplexity maximises test set probability

No guarantee on extrinsic improvement with perplexity

But perplexity correlates with extrinsic improvements

For example, perplexities of a 1.5 millions words WSJ test set

Unigram Bigram Trigram

Perplexity 962 170 109

16

Language Branching Factor

Perplexity can be seen as weighted average branching factor

Number of possible next words that can follow any word

For example, consider strings of digits of length N

PP(W) = P(w1w2...wN)− 1
N =

(
1
10

N)− 1
N

= 1
10

−1
= 10

What if digit zero occurs 10 times more often than others?

The perplexity is expected to be lower...

17

Smoothing

Smoothing

Sparse data problem since MLE based on particular training

Perfectly acceptable English word sequences may be missing

Modification on the MLE estimates with smoothing

Focus on N-grams events that were incorrectly assumed P = 0

Shaving a little bit of probability mass, piling it on zero counts

Laplace smoothing adds 1 to counts before normalisation

Does not perform well enough for modern N-grams models

Introduces many of the concepts seen in other algorithms

19

Unigram Laplace Smoothing

Adding one to count and adding V new observations

P(wi) = ci
N becomes PLaplace(wi) = ci + 1

N + V

Easier definition if thinking with adjusted count

c∗
i = (ci + 1) N

N + V
Normalisation of c∗

i by N gives probabilities P∗
i

20

Bigram Laplace Smoothing

Updating bigrams from Berkeley Restaurant Project with +1

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Normalisation with updated unigram counts with +V

P∗
Laplace(wn|wn−1) = C(wn−1wn) + 1

C(wn−1) + V

Very big changes to the counts !

C(want to) changed from 608 to 238

P(to|want) decreases from 0.66 to 0.26
21

References

Daniel Jurafsky, & James H. Martin (2008). Speech and Language Processing (Second Edition), Pearson, ISBN:
978-0-135-04196-3.
Shashank Kapadia (2019). Language Models: N-Gram: A step into statistical language modeling, March 26, 2019.
https://towardsdatascience.com/introduction-to-language-models-n-gram-e323081503d9
arvindpdmn (2020). N-Gram Model, January 25, 2020. https://devopedia.org/n-gram-model
David Masse (2018). Using Perplexity to Evaluate a Natural-Language Model, September 11, 2018.
https://medium.com/@davidmasse8/using-perplexity-to-evaluate-a-word-prediction-model-8820cf3fd3aa
Desiré De Waele (2016). Building an N-gram Model, September 2, 2016.
http://rstudio-pubs-static.s3.amazonaws.com/211935_7d57493909b7452196cf3e585c32ffa5.html

22

https://towardsdatascience.com/introduction-to-language-models-n-gram-e323081503d9
https://devopedia.org/n-gram-model
https://medium.com/@davidmasse8/using-perplexity-to-evaluate-a-word-prediction-model-8820cf3fd3aa
http://rstudio-pubs-static.s3.amazonaws.com/211935_7d57493909b7452196cf3e585c32ffa5.html

Credits

Apionid, May 2, 2015, https://www.flickr.com/photos/apionid/16720897144.
Kaja Avberšek, May 19, 2011, https://www.flickr.com/photos/kaja_a/5776006254.
Noj Han, March 7, 2009, https://www.flickr.com/photos/nojhan/3392016808.

23

https://www.flickr.com/photos/apionid/16720897144
https://www.flickr.com/photos/kaja_a/5776006254
https://www.flickr.com/photos/nojhan/3392016808

