
Université Catholique de Louvain
Louvain School of Engineering

Computing Science Engineering Department

Modeling operation errors by
model mutation

Supervisors: Pr. Charles Pecheur
Sébastien Combéfis

Reader: Bernard Lambeau

Master thesis presented in partial fulfillment
of the requirements for the degree of:
Master of science in Computer Science and
Engineering
with an option in:
Security and Networking
by:
Olivier Goletti

Louvain-la-Neuve
Belgium June 2011

-ii-

ABSTRACT

This master thesis discusses the application of mutation-based testing to human-machine
interactions (HMI) analysis. The objective is to be able to evaluate the robustness of a
mental model, which represents the way a user sees a specific system with respect to a
system model which is the formal representation of the internal states and transitions of
a given system. The main idea is to consider human cognitive imperfections leading to
operation errors and model them as mutations in this mental model. A set of mutation
operators is provided in this document and is used in a proposed framework. This tool uses
to produce mutants and to evaluate them against properties which characterize the control
the user has on the system. The results of such tests leads to the actual evaluation of the
robustness of the evaluated mental model. This document gathers theoretical material
on both the HMI and the mutation-based testing fields. It also provides experimental
results of the process on the model of a vehicle transmission system and on a model of the
Therac-25 medical device. Those results have shown that the proposed framework is able
to evaluate the robustness of a mental model.

-iii-

-iv-

I wanted to personally thank some people
who helped me going through this huge task
which is a master thesis.
Thanks to Pr. Pecheur, for your relevant
comments, your good advice and your sup-
port.
Thanks to Sébastien Combéfis, for your
rereadings, your availability and your shared
knowledge in the field, in Java, in LATEX, etc.
Thanks to Bernard Lambeau for agreeing to
be a reader of this master thesis.
Thanks to my roommates and friends for the
good mood and the basketball.
Thanks to my parents and my family for your
unswerving support.
Thanks to my girlfriend for the comprehen-
sion, for being there, for everything...

-v-

-vi-

TABLE OF CONTENTS

Abstract iii

Acknowledgments v

Table of contents vii

Introduction 1

1 Human-machine interactions 3
1.1 Introduction of the concept . 3
1.2 Labelled transition system as modeling tool 4

2 Mutation testing 7
2.1 Introduction of the concept . 7
2.2 Specification mutation . 10

3 Methodology 13
3.1 Process design . 13
3.2 Mutation operators . 14
3.3 Properties . 16

3.3.1 Full-control . 16
3.3.2 Alternative full-control . 17
3.3.3 Reachability . 18

3.4 Mental model generation . 18
3.4.1 A minimization-based approach . 18
3.4.2 A learning approach . 18

4 Architecture and implementation 21
4.1 The lts package . 21
4.2 The mut package . 28
4.3 The checkProp package . 32
4.4 Usage . 34

-vii-

TABLE OF CONTENTS

5 Experiments 37
5.1 Tests on the gearbox model . 37

5.1.1 The model . 37
5.1.2 Preliminary results . 38

5.2 Case study: the Therac-25 . 44
5.2.1 Presentation of Therac-25 . 44
5.2.2 Different mental models . 45
5.2.3 Results . 46
5.2.4 checkProp analysis . 47

5.3 Analysis . 48
5.3.1 About the mutants . 48
5.3.2 About the properties . 48
5.3.3 About the robustness . 49

Conclusion 51

Bibliography 53

Appendices 59

A API of the lts package 59
A.1 Interfaces . 59

A.1.1 LabelIF . 59
A.1.2 StateIF . 59
A.1.3 TransitionIF . 60

A.2 Abstract classes . 60
A.2.1 StateAbstract . 60
A.2.2 TransitionAbstract . 60

A.3 Classes . 61
A.3.1 LabelImpl . 61
A.3.2 StateImpl . 61
A.3.3 CompState . 62
A.3.4 TransitionImpl . 63
A.3.5 LTS . 63
A.3.6 LTSLoader . 67

A.4 Inner classes of LTS . 67
A.4.1 InnerState . 67
A.4.2 InnerState . 68

B API of the mut package 71
B.1 Interface . 71

B.1.1 MutOpIf . 71

-viii-

TABLE OF CONTENTS

B.2 Abstract classes . 71
B.2.1 MutOpAbstract . 71

B.3 Classes . 72
B.3.1 COL . 72
B.3.2 Pair . 73

C API of the checkProp package 75
C.1 Classes . 75

C.1.1 Checker . 75
C.1.2 StatTableEntry . 76

-ix-

TABLE OF CONTENTS

-x-

INTRODUCTION

The interactions between a user and a system are studied in the scope of the human-
machine interaction (HMI) research field. The main goal of HMI analysis is to provide
to the user an intuitive and easy way to control a specific system, to interact with it.
Therefore, this analysis attempts to avoid situations in which the system behaviour is
different from what is expected by the user regarding the information he has about the
current state of the system. Indeed, such problems could lead to confusions, misuse of the
system and maybe critical failures. The study of these interactions is done with the use
of formal methods on models which represent both the user and the system.

Mutation-based testing is a part of the fault-based testing techniques. The main idea
behind it is to seed some faults in a program, then to use the modified programs, called
mutants, to evaluate the ability of a test set to detect the faulty ones. With mutation
testing, these altered programs are generated by mutation operators which represents
common mistakes made by programmers. The different test cases in the test set are
then executed with the mutants. A score can then be computed on the effectiveness of the
tests to detect, to kill the faulty mutants. A higher score is better and so the idea is to
improve the test set in order to detect a maximum of mutants. The improvement of the
test suite indirectly improves the tested program since faults can be detected.

In the scope of this thesis, the idea was to apply mutation-based testing with HMI
analysis. Mutations have been seeded in a formal model, called the mental model which
represents the user of a system. The mutation operators used represent the most common
errors a user can make while using a given system. The application of mutation testing to
HMI analysis is to slightly modify a given mental model by generating mutants based on
this set of operators. While mutating this model, some properties will be analyzed on both
the original mental model and its mutated versions. The goal is to evaluate the robustness
of this model against the mutation operators, which represent in this case knowledge errors
of the user. This robustness is higher if more mutants succeed the property checks. In
other words, it is the opposite of the basic mutation testing since what is wanted now is
that mutants pass the checks instead of being killed.

The approach was firstly to chose the right set of mutation operators since they have to
represent operation errors of the user. For example, if the user of a specific system forgets
to pull a lever or does not hear an alarm signal, the corresponding mutation operator will
have to model it. This modeling is done by modifying the mental model. Once they were
chosen, the technique was applied on a simple but non-trivial system representing a vehicle
transmission system. This example is taken from [HD07]. This step was done to get a
first validation of the framework developed and to identify necessary adjustments. Then
it was applied to a larger system as case study. The system used is a Therac-25 model

-1-

0.0. INTRODUCTION

presented in [BBS08]. The Therac-25 is a well-known medical device at the origin of some
accidents (which have sometimes led to death) and has been widely studied.

The properties analyzed on the mutants study the control that a user has on the system
through those mutated version of the mental model. They focus on whether the user knows
at any times his options, the actions he can perform, the observations he should wait for,
etc. For the case study, we also looked at whether the mutants cause death or not with a
reachability property.

All those features: the modeling, the generation of mutants and the property checks
have been implemented in a Java tool: mentalRate. This tool is proposed as a frame-
work providing the basis to analyze the robustness of mental model through the use of a
mutation-based technique. This framework is also easily extendable.

The main results of this master thesis are interesting and open doors for further study
of this technique. Firstly, a set of mutation operators has been composed as a starting
point for future enhancements. Secondly, a set of properties, well-known and new ones,
has been established and studied. Finally, a process has been designed to analyze a mental
model, from its conception to the evaluation of its robustness. This process has been tested
with a case study and the results have shown that, as expected, more redundant models
are the most robust ones.

This master thesis is divided in five chapters, the first one introduces the theoretical
concepts behind HMI and explains the modeling tools used. Chapter 2 gives all the
background about mutation testing. The third chapter provides the methodology used
in order to actually analyze a mental model, and explains the process designed to do so.
Chapter 4 develops the main architectural points of the implementation. Finally, the fifth
chapter presents the experiments made. A conclusion on this year’s work terminates this
document. The complete API of the framework is also available in the appendices A, B
and C.

-2-

CHAPTER

ONE

HUMAN-MACHINE INTERACTIONS

As explained in the introduction, human-machine interaction is a core part of this
master thesis. The aim of this chapter is to introduce the concept of HMI and to present
the modelling technique which will be used in this thesis. This chapter will only focus on
the formal methods used to study HMI. Of course, there are also other methods which
focus on the ergonomic and aesthetic design of interfaces or on the psychological study of
such interactions but this kind of studies are out of the scope of this master thesis which
focus on behavioral aspects of the HMI analysis.

1.1 Introduction of the concept

HMI studies the interactions between users and machines in general. ’Machines’ is
a widely used word which stands for automated devices and more precisely in our case
for machine-based devices. The main goal of this discipline is a correct and easy use of
a machine by a human user called the operator. This kind of approach is detailed more
precisely in Degani’s book: [Deg04].

In fact, when a user is in contact with a machine, the only way for him to interact
with it is through the interface. An interface is a limit between two different media which
are here the operator and the system. In our case, the interface could either be a physical
interface (e.g., mouse, buttons, lever and also gauges, lights, sounds) or a software interface
(e.g., field in a form, button on a window, messages, alerts). This kind of interaction is
in fact a way to hide the complexity of the underlying behaviour of the machine. The
proper functioning of the device is indeed ensured by a lot of internal states and other
irrelevant information for the user. In order for a human to be able to use the system, an
abstraction of the system is provided, as a user’s manual for example. The main goal of
this abstraction is to explain clearly the behaviour of the interface without giving irrelevant
information about the system.

Getting a good abstraction is a key issue of HMI because since the user does not know
the full behaviour of the system, he may misunderstand a signal or he may think the
system is in a specific state while it is actually in another one. This could be due to
insufficient information on the interface or, in the contrary, due to too much information.
This kind of problem may lead, in the case of critical applications, to hazardous situations.
For example, the causes of the Kengworth airplane accident [BBB90] were confusing alerts
which led the crew to throttle back the wrong engine. This permits to highlight two

-3-

1.2. LABELLED TRANSITION SYSTEM AS MODELING TOOL

main concerns of HMI which are the correctness and the conciseness of the user’s manual.
The correctness is defined by Degani as an attribute of an interface with which we “can
reliably tell the current state of the machine”, with which we “can reliably anticipate the
next state of the machine” and which “does not lie to the user”. The conciseness aims to
make simple interfaces which “are cheaper to produce, make user manuals smaller and less
confusing”[Deg04].

1.2 Labelled transition system as modeling tool

This master thesis makes much use of labelled transition systems (LTS) so this section
aims to remind the basics about those data structures. The reader familiar with this
concept should skip it. For more literature about LTS, see [BG06]. A lot of information
has also been found in the first sections of [CP09].

An LTS is an enriched version of a finite state machine (FSM). A FSM is a graph
composed of a set of states S (the nodes), an initial state s0 and a transition function T .
The kind of FSM used in this thesis adds the notion of actions from a set of actions L with
which every transition is labelled. This set is called the alphabet of the LTS. Therefore,
the transition function could be written as a ternary relation: T ⊆ S ×L×S. An element
of this set, (s, α, s′ ∈ T) is written as s α−→ s′. So it is possible to fully describe a given LTS
with the following quadruplet 〈S,L, s0, T 〉. From this definition, and with σ representing
a sequence of actions from the alphabet of the LTS denoted σ = α1α2 · · ·αn ∈ L∗, an
execution from an LTS is written s0

σ−→ sn where σ is called the trace of the execution. In
the trace of an execution each action αi is labelling the corresponding ith transition of the
execution. The sequence of those transitions is denoted as s0

α1−→ s1
α2−→ s2 · · ·

αn−−→ sn. 1

HMI has been widely studied in the literature through formal methods in order to
observe, analyze and measure user interactions [DCH00, Rus02, CH03, CHL04, Deg04,
HD07, CRB07, CH08, BBS08, TG08, CP09, CPGF]. By using such methods and with
the help of mathematical models, it is possible to simulate the parallel functioning of both
the user and the system, which provides information about the interaction. A common
way to do so, as proposed in [HD07], is to use two LTSs with some enrichments to model
those two entities: the model of the machine with all its internal states, events, modes,
etc. which is called the system model (MM) and the model of the human user which is
an abstraction of the system and is called the mental model (MU).

When LTSs are used for such modeling, the notion of mode can enrich them. The
modes in a model gather a set of states belonging to a common general behavior of the
system and that the user should be able to distinguish. A mode is just an attribute given
to each state in order to make a partition of those states and to let the user know in which
operating mode is the system.

With this modeling, two types of actions have to be distinguished following the action-
based interface highlighted in [JP]. The first type is the actions which are controllable by
the user. In this set of actions are gathered all the actions which are voluntarily done by
the user. Those actions are called commands. But there are also actions which are not
controllable by the user but that the system is able to do and which are only observable
by the user. Those actions are called observations. And more formally, for an LTS M,
we have that LM = LcM

⊎
LoM, the observable alphabet of an LTS is the union of the

alphabet of the commands and the one of the observations 1. From this distinction, a
1Since this master thesis does not use the internal action τ , it is not used in the definitions.

-4-

1.2. LABELLED TRANSITION SYSTEM AS MODELING TOOL

notation describes the set of actions of a certain type available in a specific state of M.
This notation is Ac(sM) for the commands and respectively Ao(sM) for the observations.
Formally, Ac(sM) = {α ∈ Lc|sM α−→ s′M} and Ao(sM) = {α ∈ Lo|sM α−→ s′M}.

The parallel run of the mental and the system models is done by generating a new
LTS which is called the synchronous parallel composition of those two models denoted as
MM‖MU . In this composition, a state is just a composite state which represents the state
in which the system is and the state in which the user is with respect to their models. The
initial state of the composition is so a composite state with the initial states of both models
denoted as (s0M , s0U). Then, a transition with a specific label (sM , sU) α−→ (s′M , s′U) exists
in the composition only if one with the same label exists in the corresponding models from
each of the states in the composite state; i.e. sM α−→ s′M ∈ TM ∧ sM

α−→ s′M ∈ TM . A new
composite state is reached following this transition and it is made of the two destination
states in the respective models. One such composite state is created for each pair of
destination states reachable from the current pair of states in their respective model. This
means that if there is more than one outgoing transition with this label from one of the
two states, which means there is non-determinism, more than one composite states will
be created in the composition.

This modeling technique allows to work on different criteria of the interface and to
track errors. Here are three criteria proposed in [HD07]:

• No error state: a state in which the user thinks he is in a specific state while the
system is in fact in another one.

• No restricting state: a state in which the user does not have access to a specific
transition while it is available in the system.

• No augmenting state: a state in which the user have the information that a trans-
action is available while it is not allowed in the system.

These are the kind of properties to verify for a correct and coherent mental model.
Another set of properties proposed in [CH08] is:

• Feedback: verifies whether a given action provides feedback, it means that the in-
terface is updated each time an action is done in order for the user to be sure that
it was taken into account.

• Behavioral consistency: verifies whether a given action causes consistent effect, it
means that an action must always cause the same effect in the user interface. It is a
generalization from the feedback property.

• Undo: checks whether an action can be undone.

• Reversibility: checks whether an action can be eventually undone

The first set of properties describes properties on the states of a FSM modeling the
mental model. Those are behavioural ones, while the second set describes some usability
properties. The behavioural properties are interesting ones to study in the scope of this
thesis. The first set is the kind of properties on which one can easily work. This kind
of properties has been widely studied, see for example approaches using model-checking
in [Rus02] and in [CHL04]. Other approaches have been studied: with theorem prover in
[CRB07] and in [DCH00], or with graph theory in [TG08].

-5-

1.2. LABELLED TRANSITION SYSTEM AS MODELING TOOL

Those properties are not used in themselves in this work but the ones actually used
are related to this behavioural class of properties and are described in more details in
Section 3.3.

-6-

CHAPTER

TWO

MUTATION TESTING

As mentioned before, the interest of mutation-based testing in the scope of this master
thesis is to apply mutation analysis on the modeling of HMI in order to test the robustness
of a given mental model with respect to a chosen set of properties. This will be done
by mutating the mental model. The mutants will be generated with mutant operators
representing common operations errors made by a user. These mutants will be executed
against the properties to see whether they still respect them or not.

This chapter first introduces the concept of mutation testing and then details the ap-
plication of this technique to FSM. For more details on mutation testing, the two following
survey papers cover very well the topic : [OU01] and [JH10]. The reader may also take a
look at the very intuitive introduction of the thesis of Mattias Bybro: [Byb03].

2.1 Introduction of the concept

Fault-based testing is a way to test a program to demonstrate that it does not contain
pre-defined faults. For example, to prove that a given program handles division by 0, a
test with 0 as divisor will be included. It is important to remember that the goal of a good
test suite is not to prove the correctness of a program. It is to highlight not yet uncovered
errors in order to correct the program.

Mutation testing is part of this category of software testing. This technique was in-
troduced in 1971 in a paper by Richard Lipton ([Lip71]) which was written following two
papers seen by the community as the seminal papers: [DLS78] and [Ham77].

The main principle of this field is namely to mutate a program. It means to slightly
change the program in a specific pre-defined way, by inserting one or more errors in it. The
goal is to produce alternate programs called mutants. Assuming that we have a test suite
T to test the program P, the mutants will help us to rate T and indirectly to improve P.
Indeed, adding a test case in order to kill a mutant which remained alive improve directly
the test suite and it is obvious that a better T contributes to improve P.

The fundamental assumptions of mutation testing are:

• The Competent Programmer Hypothesis (CPH) which states that programmers tend
to produce programs that are close to the correct program. From the CPH, we
assume that only simple likely faults are made and so that only such faults will be
inserted into mutants.

-7-

2.1. INTRODUCTION OF THE CONCEPT

• The Coupling Effect Hypothesis (CEH) which states that complex faults are linked
to simple faults such that if we have a test data set capable to detect the simple
faults, it will also detect most of the complex faults.

Those two hypotheses where expressed for the first time in [DLS78]. The CPH was the-
oretically discussed in [BDLS80] and the CEH was demonstrated in [Wah95] and [Wah00].
They allow mutation testing to only focus on simple likely faults. Mutants containing
a single error are called first-order mutants and they represent one single error. Those
with more than one error are called high-order mutants. Thanks to those two hypotheses,
mutation testing will only care about first-order mutants which will just be referred as
mutants from now.

The generation of mutants is based on a set of mutation operators which will represent
a predefined set of faults. For example, the well-known set of mutation operators Mothra
is presented in Table 2.1. These operators are the representation of the most common
errors made by programmers in Fortran programs. For example, the AOR operator could
be illustrated by the replacement of a + in a program by another arithmetic operator
among ×, / and −.

Type Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement alterations
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis (replacement by TRAP)
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Table 2.1: The 22 Mothra Fortran mutation operators (adapted from [KO91])

Now let us come back at our program P. T is a test data set for P, which is assumed
to be correct, i.e. passing T . If we now generate mutants of the program thanks to a set
of mutation operators some of them will also pass T while others will fail it. The ones
which failed are said to be killed, i.e. the error has been detected. The remaining ones
are the alive mutants. Each mutant which passes T is a potential error in P since it’s
an error which is not detected by T . Identifying alive mutants can improve the program

-8-

2.1. INTRODUCTION OF THE CONCEPT

by forcing the programmer to add another test case to kill them and, by doing so, maybe
to find errors in P. It is also possible to have mutants which will never be killed since
they are equivalent versions of P. Such a mutant is called an equivalent mutant and is
undetectable automatically since program equivalence is an undecidable problem.

We said earlier that mutation testing was a mean to rate T . Indeed, we can compute
the mutation score (MS) with the formula 2.1. The aim is to maximize this score and a
test suite is said to be adequate if MS = 1.

MS = number of killed mutants
total number of non-equivalent mutants (2.1)

With this information, we can see the mutation testing process as a feedback loop on
the testing of a specific program. A common used schema is provided at Figure 2.1.

Original
Program P

Test Set T

P Correct?

All P ′
Killed?

Analyse
Equivalent
Mutant Q

Quit

Run T on
Each Live P ′

Run T on PCreate
Mutant

True

FalseTrue

New Test
Data

False

Mutant P ′

Figure 2.1: Generic Process of Mutation Analysis (adapted from [JH10]).

Since the equivalence problem is undecidable, the programmer may wonder whether the
remaining mutants are equivalent or not. This leads to a drawback of mutation testing
which, among others, is an impediment to the wide utilization of this technique. The
programmer have to check all those remaining mutants to see whether or not they are
equivalent to P. Another very time-consuming problem is the generation of all mutants.
If one has to exhaustively generate one mutant for each single error at each potential fault
place in P, the computational time will raise proportionally. A third difficulty is checking
the tests results. Indeed, each time we run a test on a mutant, the programmer has to
compare the output with the correct output and decide whether the mutant is killed or
not.

All these drawbacks have driven the researchers to develop some optimizations. The
most important are:

• Mutant reduction: This optimization aims at reducing the number of generated
mutants without affecting the mutation score. In order to do so, the idea is to

-9-

2.2. SPECIFICATION MUTATION

reduce the number of mutation operators in the operator set. In fact, some mutation
operators may produce many more mutants than other ones and many of them could
be redundant. For example, ASR and SVR in the Mothra operators are responsible
for 40% to 60% of all the generated mutants [KO91]. Reducing the number of
mutants could be done by omitting the mutation operators responsible for the largest
number of mutants. This technique is called selective mutation [ORZ93]. Another
way is to choose more “clever” mutation operators which require the most precise
test cases. For example, choosing in the Mothra operators set only ABS and ROR
because of the cleverness behind the errors. This technique is called constraint
mutation [WM95]. A technique based on the previous ones is to do a statistical
analysis on the set of mutant operators to identify the best subset of mutants which
permits to generate less mutants without affecting the mutation score.

• Execution reduction: Here the optimization is no more to reduce the number of
mutants but to optimize the mutant execution process. In particular, the approach
here is the improvement of the decision process which checks whether a mutant is
killed or not. Strong mutation is the standard way, i.e. the mutant is killed if its
output is different from the original program. With weak mutation, the mutant is
directly checked after the execution of the mutated part of the original program. It
reduces indeed the time needed to check all mutants since a complete execution is
no more needed for each mutant. It has been shown that in most the common cases,
weak mutation is a viable alternative to strong mutation [OL91].

For more details about mutant reduction and execution reduction, the survey paper
[JH10] gives a lot of further readings.

2.2 Specification mutation

In this subsection, we will see how the mutation analysis can be transposed to spec-
ifications since the application field for this thesis is to apply mutation analysis to FSM
which are a way of representing specifications.

Mutation testing has now been widely studied and has been applied both to program
and to program specification. We have described it as white-box testing, i.e. we looked
into the source code of a program in order to insert faults. But specification mutation
belongs to black-box testing. In this case, the faults are seeded into the design level of a
program and the testing is oriented to the software function. Again, refer to the survey
[JH10] for pointers about this field of application of mutation based testing.

This technique can be applied to any formal language which describes software in
abstract terms, these languages are also called model-based languages. The mutating
syntax for such an application is very close to the one used for program mutation. One
must define a set of mutation operators and apply it on the model. But in the case of
model-based mutation, test cases are this time traces which are allowed in the original
machine. If this trace is not allowed in a specific mutant, then it is killed.

Killing a mutant can be done automatically through the use of a model checker. This
kind of tool aims at verifying a property on a concurrent system, meaning the execution
of different components together and in our case this is the mental and the system model.
The main way to express those properties is in linear temporal logic (LTL). The temporal
logic is able to deal with the time ordering in which events should happen without explicitly

-10-

2.2. SPECIFICATION MUTATION

introducing time [CGP]. But LTL is not the only way to do model checking, it is also
possible to do it through model comparisons, which is one of the technique we use. The
idea is to compare two models by exploring their different states through a traversal and
defining an equivalence with respect to a property. Another technique used is reachability,
which allows to checks whether a given state is accessible. The properties actually used
are defined in Section 3.3. And so, using this model checking, we are able to automatically
check a desired property on a mutant and to provide an error trace if the mutant is killed.

A good point in the model-based mutation is that the equivalence problem disappears.
In fact, this problem becomes decidable since we deal here with finite models. This leads
to the fact that we know whether a mutant is equivalent or not directly by using a model
checker ([OAL07]).

Mutation testing on FSM has been applied for the first time by Fabbri et al. in
[FDMM02]. They proposed a set of mutation operators for mutation analysis on FSM
which is adapted and explained here:

arc-missing: a transition is removed from the graph representing the FSM.

wrong-starting-state: the initial state of the FSM is changed.

event-missing: a label of a specific action is removed.

event-exchanged: a label has been exchanged by another one from L .

event-extra: a new action from L is added to label a transition.

state-extra: a new state is added in the FSM.

Another set of mutation operators could be found in [LDL09] and is adapted here:

Reverse of Transition (ROT): the direction of a transition is reversed.

Missing of Transition (MOT): a transition is lost, or it is not defined.

Redundancy of Transition (DOT): more transitions than expected occur.

Change of Input (COI): the action labelling a transition has been changed.

Missing of Input (MOI): a transition without an action or with a null action.

Start State Changed (SSC): the initial state has been changed.

Start State Redundant (SSR): a new state is introduced in the FSM. It could be
redundant.

As explained before, a single operator provides more than one mutant. In this case,
except of DOT and SSR which are not quantifiable, all the other mutation operators
produce mutants in a polynomial way [LDL09].

The authors who have proposed those set have shown that mutation testing can be
effectively applied to FSM on basis of those operators. Fabbri et al. also raised the fact
that some specific classes of mutants of order 2 seemed to be very effective for FSM.

The set of operators actually used in this thesis will be discussed in the following
chapter and is based on those operators sets.

-11-

2.2. SPECIFICATION MUTATION

-12-

CHAPTER

THREE

METHODOLOGY

This master thesis is related to HMI because, instead of testing the correctness of the
mental model (i.e., the interface), it works on the robustness of such a model. It means
that the objective is to see whether the interface is well designed enough to stay coherent
with the system even in case of a operation error. This is done through the use of mutation
analysis.

In order to do so, a set of errors is defined and some properties, that where verified
with the correct mental model, are checked on the mutants to see whether they still remain
verified or if not, in which ratio. The errors are modelled as mutations as explained here
above. This chapter first presents the process which evaluates the robustness of a given
mental model. Then, the different mutation operators and the different properties chosen
for the experiments of the thesis are detailed.

3.1 Process design

Figure 3.1 describes the complete process which is used to rate a mental model. This
evaluation is the result of an analysis of the robustness of the mental model against the
chosen mutation operators and properties. This process has been implemented in a tool
called mentalRate.

mental model
generation

mental
model mutGen Coll<LTS>

mentalRate

checkProp

system
model

robustness
evaluation

Or

Figure 3.1: From a mental model to a robustness rate

-13-

3.2. MUTATION OPERATORS

The first input to feed the mentalRate process with is a pair of LTSs. One represents
a system and the other is a mental model for this system. This mental model can be
obtained in different ways. One of them is to manually retrieve it from a user’s manual,
the other possibility is to generate it based on the system model itself. Several techniques
among which a minimization-based approach [CP09] and a learning approach [CPGF] can
be used for this problem. Those two techniques are explained in Section 3.4 once the
needed properties are defined.

The mental model is passed through the first tool: mutGen. This tool is implemented
in Java and aims at generating a set of mutants given a mutation operator and an LTS.
The number of mutants generated blindly by a specific mutation operator could be very
large as explained in the background in Section 2.1. This is the reason why one specific
mutation operator is a lazy process which outputs the mutants on demand. Doing so, the
user of the application can easily put an upper bound to the number of generated mutants.

The next tool takes as inputs a system as an LTS and a bunch of mutants of a given
mental model for this system. The tool provides an output which evaluates the success of
the mutated mental models on the system for this property. The different outputs will be
detailed in Section 4.4.

3.2 Mutation operators

Based on the lists provided in Section 2.2, this section explains the mutation operators
effectively chosen. But before presenting them, the first point to discuss is that those op-
erators have to represent system operation errors. The lists above are mutation operators
for generic state machines without particular purpose or meaning in terms of cognitive
imperfections. Nevertheless, we have to keep in mind the fact that a mutation operator
represents a simple mistake.

The best way to develop rigorously a list of common, basic and simple operation errors
is to do a scientific usability study of people using a specific device, recording all the
manipulations and then analyzing and statistically populating such a list. A very good
discussion comparing usability analysis and formal analysis has been made in [CH03]. But
this was not in the scope of this master thesis. So the mutation operators where chosen
based on the above lists and on common sense.

Here is the exhaustive list of the mutation operators used. Some visual examples of
the different mutants are proposed in Figure 3.2. As a reminder, these mutation operators
are defined for LTS:

Change Of Label (COL): the COL mutation operator takes one transition in the LTS
and swaps its label with another one from the set of existing labels L. The corre-
sponding manipulation error could be seen as the user mixing up the actions confus-
ing between left and right (Figure 3.2b).

Insertion Of Transition (IOT): in this case, a transition which does not yet exists in
the LTS is added between two existing states. The label of this transition is taken
from L. In this case, the user just thinks that an additional command or observation
is available in a given state (Figure 3.2c).

Missing Of Transition (MOT): the MOT mutation operator simply removes one ex-
isting transition from T . It could just be an omission of the user (Figure 3.2d).

-14-

3.2. MUTATION OPERATORS

MOT2: this operator is an improved version of MOT and aims to be more clever than it in
terms of modeling of an operation error. Instead of just removing one transition from
s1 to s2, it also duplicates the transitions coming to s1 making them arriving directly
to s2. This is done in order to model the missing of the transition in the mental
model in such a way that nothing have to happen to go from s1 to s2 (Figure 3.2e).

MOT3: this third version of MOT tries again to be a more realistic one. This time, the
mutation operator merges the two states involved in the deletion of the transition.
It means the deletion of the two previous states s1 and s2 and the creation of a new
state s1_s2. All transitions going into s1 or s2 (except the one has been removed)
are redirected towards the new state and all outgoing transitions from s1 (except the
one that has been removed) or s2 are now going from the new state. This time, the
user thinks there is just no difference between the two states (Figure 3.2f).

Reverse Of Transition (ROT): this mutation operator inverts the source and destina-
tion states of an existing transition. This could model a mixing up of the user who
just swaps the two states (Figure 3.2g).

Starting State Changed (SSC): this mutation just sets another state as the initial
state of the LTS. This could model the fact that the user thinks the system should
start in a specific configuration while in fact it begins in another one. This could be
due to an unclear explanation in the user manual (Figure 3.2h).

Of course, the number of mutants generated by each mutation operator is determined
by precise formulas (as a recall, the cardinality of set A is denoted as |A|). Those formulas
are provided here and the parameters involved are those of the mental model:

COL: |T | × (|L| − 1).

IOT: |S|2 × |L| − |T |.

MOT: |T |.

MOT2: |T |.

MOT3: |T |.

ROT: |T |.

SSC: |S| − 1.

Those formulas directly lead to the observation that COL and IOT will generate more
mutants that the other ones. This is the same kind of reasoning as in Section 2.1 about
the optimizations about the mutation operators set. Since the idea here is not to remove
mutants, the amount of mutants being generated by COL and IOT has been bounded.
Indeed, since the mutation operators produce mutants at random in our framework (Sec-
tion 4.2) the ratio of succeeding mutant remains significant if the generated amount is
sufficiently high. This bound is an adaptation of the idea behind the optimizations which
was: the optimization aims at reducing the number of generated mutants without affecting
the mutation score.

-15-

3.3. PROPERTIES

(a)
Original

LTS

(b) COL
mutant

(c) IOT mutant (d)
MOT

mutant

(e) MOT2 mutant (f) MOT3
mutant

(g) ROT mutant (h) SSC
mutant

Figure 3.2: Example of mutants resulting of the above list of mutation operators applied
on the LTS on Figure 3.2a. The starting state node has a rectangular shape.

3.3 Properties

This section describes in more details the different properties which will be used in the
experiments in order to see whether one mutant is killed or not. As a reminder, the reader
should keep in mind that the goal here is to see whether a mutant succeeds or not in order
to say that the mental model is robust enough to resist to such manipulation errors.

The following properties are also behavioral like the first set in Section 1.2.

3.3.1 Full-control

The first property, and also the strongest one, is the full-control property[CP09]. This
property only holds if the user has a total control on the system through its model. Even
a small change in the mental model can bring the full-control down because this property

-16-

3.3. PROPERTIES

is very strong. We say that a mental model allows full-control of a system if at any time,
when using the system according to the mental model, we have that (this is a quotation
from [CP09], Section 3.2):

• the commands that the mental model allows are exactly those available on the sys-
tem;

• the mental model allows at least all the observations that can be produced by the
system.

The full-control of a mental model MU for a system model MM can be formally
written as:

∀(sM ∈ SM , sU ∈ SU , σ ∈ Lobs∗) such that s0M

σ−→ sM ∧ s0U

σ−→ sU ,

we have:
Ac(sM) = Ac(sU) ∧Ao(sM) ⊆ Ao(sU)

A parallelism can be made with the first set of properties in Section 1.2. Indeed, no
augmenting-state corresponds to not having more commands in the mental model and
no restricting-state corresponds to not having missing commands or observations in the
mental model.

3.3.2 Alternative full-control

While the precedent property is an existing one, this property is new. This property
is weaker than the full-control. In fact, it still represents the fact that a user can control
the system, but this time, it is not mandatory that the user is able to do any possible
commands allowed by the system.

We say that a mental model allows alternative full-control of a system if at any time,
when using the system according to the mental model, we have that:

• the system model allows at least all the commands that are available in the the
mental;

• the mental model allows at least all the observations that can be produced by the
system.

The alternative full-control of a mental model MU for a system model MM can be
formally written as:

∀(sM ∈ SM , sU ∈ SU , σ ∈ Lobs∗) such that s0M

σ−→ sM ∧ s0U

σ−→ sU ,

we have:
Ac(sM) ⊇ Ac(sU) ∧Ao(sM) ⊆ Ao(sU)

The same parallelism can be made with the first set of properties in Section 1.2 as
above.

-17-

3.4. MENTAL MODEL GENERATION

3.3.3 Reachability

The last property that is studied is a reachability one. This property is checked by a
traversal of the graph to see whether a reachability condition is filled or not.

A state s in an LTS is said to be reachable if there exists an execution leading from
the initial state through s. Formally, sM is reachable in a LTSM if:

∃σ ∈ Lobs∗ such that s0M
σ−→ sM

In the case study, it is applied to see whether a state with some specific properties is
reached or not (more details about this is given in Section 5.2.3). The application of this
property with the Therac-25 model allows us to checks whether a specific state is reached.
In order to check that, a pattern on the name of the state has been identified and the
reachability property is verified by doing a traversal of the LTS and verifying in each state
whether the name corresponds to the pattern.

3.4 Mental model generation

This section presents the two mental model generation techniques mentioned in Sec-
tion 3.1, respectively the minimization-based approach [CP09] and the learning approach
[CPGF].

3.4.1 A minimization-based approach

This technique is based on the idea of merging the states in the system which can be
seen in the mental as having the same behaviour. This merging of states allows to build an
abstraction of the system which is the searched mental model. In order to do so, the authors
define an equivalence relation based on the full-control property. This equivalence relation
states that “two equivalent states must allow the same set of commands but may allow
different sets of observations”. Then, using this equivalence relation, the minimization is
the merging of fc-equivalent states. This merge is done in the same way as the merge in
MOT3, i.e. redirecting all transitions having one of the fc-equivalent states as destination
towards the merged state and all the transitions going from one of the fc-equivalent states
are now going from this merged state. The model constituted of those state merged is a
mental model for the system, with full-control on the system and minimal in the number
of states.

3.4.2 A learning approach

This technique derives a mental model from a given system model and is based on the
L* learning algorithm and is explained in [CPGF].

The L* algorithm from [Ang87] aims to learn a language on the basis of words from a
given finite alphabet and an oracle saying whether a word is part of not of the language,
the membership query. The algorithm makes guesses by producing words and build can-
didates called here Deterministic Finite Automaton (DFA). A DFA is a state machine
with accepting states which can decides whether a word is part of the language it covers
or not. So L*, trough an iteration mechanism, builds candidate DFAs with the oracle
responding to membership query. Then, a second type of oracle is needed which answers
to conjectures and is able to say, given a DFA, if the language covered by this DFA is

-18-

3.4. MENTAL MODEL GENERATION

or not equal to the searched language and if not, produces a counter-example as a trace.
L* is guaranteed to propose conjectures of strictly increasing size until the minimal DFA
covering the language is found.

The version in [CPGF] is able to learn a Three-Valued Deterministic Finite Automaton
(3DFA, notion introduced in [CFC+09]) which will produce a mental model having the
full-control on the system. The states of this kind of automaton are partitioned in three
types: the accepting, the rejecting and the “don’t care” states. A DFA is said to be
consistent with a 3DFA if and only if all strings accepted by the 3DFA are also accepted
by this DFA, and all strings rejected by the 3DFA are also rejected by the consistent DFA.
A 3DFA characterize a range of DFAs with the upper bound being the DFA where all
the don’t care states become accepting ones while the lower bound is the one where they
become rejecting ones. The language that the algorithm learns is the range of full-control
mental models. This times the membership query is answered with either “yes” if the
sequence should be accepted, “no” if it should be rejected or “don’t care” in the third
case. The conjectures are answered yes if the 3DFA provide full-control and no in the
other case. When the minimal 3DFA is found,the corresponding minimal consistent DFA
is chosen as the mental model.

-19-

3.4. MENTAL MODEL GENERATION

-20-

CHAPTER

FOUR

ARCHITECTURE AND IMPLEMENTATION

This chapter digs a little bit further in the main architectural aspects of the mentalRate
tool. The most important features are also developed. It goes through all of the packages
constituting the application. The first one is the lts package which includes all the
implementation of the data structure of an LTS. Secondly is described the mut package
which contains the implementation of all the mutation operators. The third package is the
checkProp one in which all the property checks are implemented. Finally, a quick usage
section explains how to use the provided application.

4.1 The lts package

The implementation of the main data structure of the project was a main concern in
this master thesis. It is based on an implementation of Sébastien Combéfis. He makes
much use of LTSs in his research work. A class diagram of this package is presented in
Figure 4.1.

In this implementation, there are some collections which represents the different parts
of the quadruplet presented in Section 1.2: 〈S,L, s0, T 〉. There is also the principle of an
inner representation of the states and transitions. Those internal classes, which names are
prefixed with Inner, wrap external abstract classes, suffixed with Abstract that any user
of the LTS type should use. This mechanism is done to hide the structure of the LTS to
the outside. In order for the user to interact with the LTS, he should know which external
state or transition he wants to manipulate and the links in the structure are hidden, so
he can not mess with it. Moreover, it gives the user the possibility to extend the abstract
framework proposed without having to change all the internal structure of the LTS. The
signature of this class is:

1 public final class LTS<S extends StateAbstract, T extends TransitionAbstract> implements Cloneable

Each of the following features are presented hereafter. Firstly the abstract framework,
then the LTS fields, the Cloneable implementation and finally the different ways to save
a LTS.

This implementation of an LTS also provides a bunch of methods to get information
about it and to edit it. The complete list of used functionalities can be found in a detailed
specification of the API, in JavaDoc format, is provided in Appendix A (the lts package),
Appendix B (the mut package) and Appendix C (the checkProp package). The main

-21-

4.1. THE LTS PACKAGE

methods are detailed hereafter.

-22-

4.1. THE LTS PACKAGE

Fi
gu

re
4.
1:

U
M
L
re
pr
es
en
ta
tio

n
of

th
e
lt
s
pa

ck
ag

e.

-23-

4.1. THE LTS PACKAGE

• LTS(): This constructor is the simplest one and just initialize the fields of an LTS
object.

• LTS(S initialState, Collection<S> states): This constructor allows to create
an LTS with some predefined states and an initial state which should also be in
states.

• LTS(S initialState, Collection<S> states, List<T> transitions, List<S>
from, List<S> to): Create a new instance given an initial state, a collection of
states which has to contain the initial state, and a list of transitions. Two other lists
of states are provided. The ith element of from is the source of the ith transition
and the ith element of to is the respective destination of this respective transition.

• LTS<S, T> clone(): Duplicate the LTS.

• void saveAsDotFile (String filename): Generate a dot file for the LTS.

• void addState (S newState): Add a new state to the LTS. newState cannot be
part of the LTS.

• void removeState(S delState): Remove a state from the LTS. delState must be
part of the LTS.

• HashSet<T>inTransitions (S s): Get the ingoing transitions to a state

• HashSet<T>outTransitions (S s): Get the outgoing transitions from a state

• List[] getTransitionsFrom(S state): Return two lists List<T>,List<S>. The
first is the list of transitions in this and the second one is the list of corresponding
destination states.

• List[] getTransitionsTo(S state) Return two lists List<T>,List<S>. The first
is the list of transitions in this and the second one is the list of corresponding source
states.

• List[] getTransitions(): Return three lists List<T>,List<S>,List<S>. The
first is the list of transitions in this, the second one is the list of corresponding
source states and the third one is the list of corresponding destination states.

• Set<T> getTransitionSet(): Get the set of transitions in the LTS.

• void addTransition (T newTransition, S fromState, S toState): Add a tran-
sition to the LTS.

• void removeTransition (T delTransition): Remove a transition from the LTS.
delTransition must be part of the LTS.

• boolean hasTransition (T transition): Check whether transition is already
part of the LTS.

• boolean hasTransition (S from, S to, LabelIF label): Check whether a tran-
sition with source from and destination to and labelled label is already part of the
LTS.

• S source (T t): Get the source state of a transition.

• S destination (T t): Get the destination state of a transition.

-24-

4.1. THE LTS PACKAGE

The abstract framework

The abstract framework presented above (and represented on Figure 4.1) is a set of
interfaces and abstract classes. The class which represents a state of an LTS should ex-
tend the StateAbstract class provided in the lts package. The same mechanism is
required for the implementation of a transition and the corresponding abstract class is
TransitionAbstract. Those two abstract classes implements respectively two interfaces
StateIF and TransitionIF which define some getters the implementations should have
in order to be usable by the rest of the framework: getMode() and getName() for the
states, getLabel() and getID() for the transitions. The abstract classes abstractly over-
ride equals(Object o) and hashcoe() in order to force their overriding when they are
extended. For the labels, the LabelIF interface should be implemented and doing so the
methods getType() and getName().

The goal of this abstraction is to hide the internal structure of the LTS to the out-
side and also to allow a user to personalize its own version of an element of an LTS. Of
course, standard implementations are provided. The StateImpl class is the one for the
states. It just contains two fields, one for the name of the state and one for the mode,
and the corresponding getters. This is the simplest implementation. Another implemen-
tation has been made for the representation of a composite state: CompState<S extends
StateAbstract>. This implementation is similar to the previous one except that there
are two more fields in it for the corresponding system and mental states. For the tran-
sition, the provided implementation is TransitionImpl. It also contains two fields, the
label and an id. There is an id in order to be able to distinguish two transitions with the
same label. Those two implementations also override the equals method. Finally, the
LabelImpl class just has a field for its name and another for its type. The type is defined
as an enum structure and is there for the distinction between commands and observations
inside an LTS.

Inside an LTS instance, the transitions and states are encapsulated in inner types.
Figure 4.2 illustrates the relations between internal and external types. The inner types
take care of the structure of the LTS. For the InnerState class, an instance remembers
the in and out transitions. For the InnerTransition class, an instance remembers its
source and destination states. The fields in those internal classes are of the external types.
As mentioned above, each of those inner elements also encapsulates an instance of the
respective external class. The correspondence between an external element and its internal
encapsulation is kept in the HashMaps presented hereafter, respectively statesMap for the
states and transitionsMap for the transitions. This has indeed to be done because the
user only knows about external elements.

-25-

4.1. THE LTS PACKAGE

Fi
gu

re
4.
2:

R
el
at
io
ns

be
tw

ee
n
th
e
in
te
rn
al

an
d
ex
te
rn
al

re
pr
es
en
ta
tio

ns
of

th
e
st
at
es

an
d
tr
an

sit
io
ns
.

-26-

4.1. THE LTS PACKAGE

The LTS fields

Here are detailed the data structures in the LTS type. As explained above, those are
the internal representations of the different parts of the quadruplet representing a LTS:

• private HashMap<S, InnerState<S, T» statesMap corresponds to the S set. It
establishes the binding between the external representation of a state and its internal
instance. It is also the collection of all the states in the LTS.

• private HashSet<LabelIF> labelsSet corresponds to the alphabet of the LTS
(L).

• The initial state s0 is just kept in private S initialState.

• Finally, the transitions collection is like that of the states since the same mechanism
is used here for the wrapping in an internal representation of a transition. The
corresponding Java one is HashMap<T, InnerTransition<S, T» transitionsMap.

The Cloneable implementation

Since in the context of the mutants generation, an LTS instance has to be reproduced
many times and then modified, it had to be a cloneable object. In order to do so, all the
types used in it (states, transitions, labels, etc.) had to be immutable. An immutable
object in Java means that from its creation to its destruction, the state of the object
remains the same. Such an object cannot be modified and this gives it the property,
among others, to be cloneable as-is. When a collection is cloned, only the reference to
the objects within is copied instead of the all content of each object. This means that if
an element of the collection resulting of this clonage is modified, the cloned one is also
modified. But with immutable objects, since they are not editable, the problem does not
subsist. The use of immutable objects allows to clone the collections and considers the
clone as a perfect copy of the cloned collection.

This means that if anyone wants to extend the abstract framework explained above,
he has to make sure that his own implementation is still immutable. In order to do so here
are some guidelines, adapted from [Blo08]. The main rule to follow is: Don’t provide
any method that modify the object. Do not provide any setter class on any field. The
following rules are a way to achieve this property which is at the base of the immutable
concept:

1. Make the class final. This will prevent the class to be extended, this inheritance
mechanism allowing to add mutable fields or to overwrite some methods.

2. Make all fields final and private. This final keyword is the Java way to say
that once they are defined, they may no longer be modified. The private keyword
limits the visibility of the fields. This prevents any user to modify them.

3. Ensure exclusive access to any mutable component. It means that if the
object has to have a mutable instance as a field, it should be the only one to have
access to the reference of this mutable instance. No exports of such a reference are
allowed. And if the mutable instance is an external one, then a defensive copy should
be made. This means that a new instance has to be created with the same value as
the original one. And only this copy should be used inside the object.

-27-

4.2. THE MUT PACKAGE

Saving formats

There are different formats available to save an LTS. The LTS type has the method
saveAsDot-File (String filename) which is able to save the LTS as a DOT file. This
is a common language used for graph representation. There are a lot of tools available
for the manipulation of DOT files. For more information, see [GN00]. The loading from a
“.dot” file is not handled since this is a format mainly used for visualization.

As illustration of a “.dot” file, here is the one corresponding to Figure 3.2a.
1 digraph LTS {
2 "S1" [shape=box];
3 "S1" -> "S2" [label="a"];
4 "S2" -> "S3" [label="b"];
5 }

Listing 4.1: ".dot" file corresponding to Figure 3.2a

The LTSLoader class is another class from the lts package. It provides the loading
and the saving of an LTS from its description in a .lts file, and the saving of an LTS in a
similar file. Of course, such file must have a specific structure. This structure is presented
through an example in Listing 4.2. Again, this is the file corresponding to Figure 3.2a.

1 ; States
2 S1 0
3 S3 0
4 S2 0
5 ; Transitions
6 S1 S2 a O
7 S2 S3 b O

Listing 4.2: ".lts" file corresponding to Figure 3.2a

In this format, the states are enumerated with their corresponding mode, here 0 for
the example. Then each transition is defined with the structure : [FromStateName]
[ToStateName] [Label] [LabelType].

4.2 The mut package

Figure 4.3: UML representation of the mut package.

The mut package gathers mutation operators. Each operator is a class which extends
the MutOpAbstract abstract. This abstract class is the common basis between all the
mutation operators, it contains some getters and also implements the MutOpIF interface.

-28-

4.2. THE MUT PACKAGE

This architecture of the mut package is represented in Figure 4.3. When creating an
instance of one of those mutation operators, an LTS is given as input. Then the method
mutate() implementing the interface’s corresponding method provides a new different
random mutant each time it is called.

1 public LTS<StateImpl, TransitionImpl> mutate();

Each mutation operator is base on one or more components of a LTS. The corre-
sponding collection of the elements involved in the mutation is called components. If the
mutation has to be done on the transitions of an LTS, then components is a collection
of those transitions either directly retrieved from the LTS itself or constructed from it.
Each time the method is called, a element of the collection is chosen at random and the
corresponding mutant is returned. Of course, if the mutant is already generated, another
one is returned.

Not all mutation operators are only based on one component of an LTS but sometimes
on two, or three (IOT for example, insertion of transition). This is why an accumulator
mechanism is used in each of the mutation operator. In fact, the call to the mutate()
method seeds the process with random indices in the range of the different collections
of component implied in the mutation. Then, an overload of mutate with those indices
as parameters is called. This method checks whether the given values correspond to a
set of elements on which the mutation has already be done or not. If it is, then the
accumulators are incremented and the principle of tail recursion is used by this method
to call itself. Otherwise, the corresponding mutant is generated and returned. In order to
illustrate this, Algorithm 1 is provided hereafter. It represents the algorithm for only one
component involved in the mutation. But then an example will be given with the IOT
mutate method, and in this later mutation operator, three components are involved.

A cosmetic detail has to be highlighted here. Since states have names and since some
mutation operators are brought to modify or to suppress states, it is interesting to give
meaningful names at those states. Doing this allows one to visually see the mutation and
to have a better understanding of it through this visualization. An example of this can be
seen in Figure 5.3 in Section 5.1.2.

The IOT example

As an illustration of the proposed algorithm, the mutate()method of the IOT mutation
operator is now detailed. As a recall of Section 3.2, this mutation operator inserts a new
transition between two existing states of the LTS. It means that for each state considered
as a starting one and for each state considered as an ending one, one transition per label
is insertable, except for the existing ones.

First, in Listing 4.3 are the declarations of the two collections corresponding to com-
ponents in Algorithm 1, and the one corresponding to done. The done collection is a map
between a pair of states and an array of boolean. This is a two levels table in which there
is an entry for each pair of states in the LTS and for each pair there is an array of the
length of labels. The Pair type is just an encapsulation of two states. So for each pair of
states, the ith element of the boolean array is set to true when the corresponding mutant
has been generated for the ith label in labels.

1 private LabelIF[] labels;
2 private StateImpl[] states;
3

4 private HashMap<Pair, boolean[]> done;

-29-

4.2. THE MUT PACKAGE

Algorithm 1: Skeleton of the mutate algorithm
Input: maxMutateCalls a positive integer which represents the maximum

number of calls to mutate before having generated all the mutants
Input: acc a positive integer which represents the current number of calls to

mutate
Input: done a set of the already done indices
Input: components the collection of the components involved in the mutation
Result: a new random mutant not yet generated by the operator or null if all

mutants for this mutation operator have already been calculated.
1 mutate():
2 i← randomV alue() ;
3 return mutate(i) ;
4 mutate(int i):
5 acc+ + ;
6 if acc ≤ maxMutateCalls then
7 if i ∈ done then
8 return mutate(i+ 1);
9 else

10 done← done ∪ {i} ;
11 acc← 0;
12 return genMutant(components(i));
13 end
14 else
15 return null;
16 end

-30-

4.2. THE MUT PACKAGE

Listing 4.3: The components collections

Those collections are initialized in the constructor of the mutation operator. The
corresponding code is given in Listing 4.4. As we can see IOT is fed with an LTS called
toMutate this initialization mechanism is the same for all the mutation operators. The
two components collections are also retrieved from this LTS. Then, a few variables are
initialized. Among them, maxMutateCall is initialized as the square of the number of
states times the number of labels. This is just the number of possibilities to enter the
mutate method. The maxMutants variable is also available in each implementation of a
mutation operator and is the actual number of mutants that will be generated by this
operator. The difference between those two numbers is the number of existing transitions
in the case of IOT. This is because the mutation operator does not add a duplicate of an
existing transition and so, does not output those mutants.

1 public IOT(LTS<StateImpl, TransitionImpl> toMutate){
2 this.toMutate = toMutate;
3 name = "IOT";
4

5 labels = toMutate.getLabels().toArray(new LabelIF[0]);
6 states = toMutate.getStates().toArray(new StateImpl[0]);
7

8 acc = 0;
9 maxMutateCalls = states.length * states.length * labels.length;

10 maxMutants = maxMutateCalls - toMutate.getTransitions()[0].size();
11 done = new HashMap<Pair, boolean[]>(maxMutateCalls);
12 }

Listing 4.4: The IOT constructor

So the creation of one mutant in IOT involved three components. This is why the
mutate() method produces three random numbers in the range of the components corre-
sponding collections. The code of the IOT one is given in Listing 4.5.

1 public LTS<StateImpl, TransitionImpl> mutate() {
2 Pair i = new Pair((int) Math.floor(Math.random() * states.length), (int) Math.floor(

Math.random() * states.length));
3 int j = (int) Math.floor(Math.random() * labels.length);
4 return mutate(i,j,1,1);
5 }

Listing 4.5: The IOT mutate() method.

Finally, the core of the mutation is provided in Listing 4.6. The signature of the
method includes two more accumulators. It is because three components of the LTS are
involved in each mutation and because, if for a triplet of indices, the corresponding mutant
has already being produced, then the method have to generate the following one. If there
was no more accumulator, the other way to proceed would have been to try with another
random triplet, but this is inefficient, since when most of the mutants have been generated,
the chance to have an already handled triplet raises up and so the pure randomness could
loops unnecessarily for a while. Here, for each call, the method outputs a new mutant in
a bounded time O(maxMutateCalls). The idea is not to have a perfectly random way of
producing the mutants, but just to produce them in a well distributed way.

In the method, Algorithm 1 is well followed. Firstly, the method checks whether the
main accumulator is still under maxMutateCalls. If it is the case, then the method checks
whether the mutant has already been generated or not. If not and if the triplet of indices
does not correspond to an existing transition the mutant is produced. Otherwise, if the

-31-

4.3. THE CHECKPROP PACKAGE

transition exists or if the mutant has already been returned, a new call is made with the
accumulators correctly incremented.

1 public LTS<StateImpl, TransitionImpl> mutate(Pair i, int j, int labelAcc,int stateAcc) {
2 acc++;
3

4 boolean[] labelsDone = done.get(i);
5

6 if (acc <= maxMutateCalls){
7 if (labelsDone==null){
8 labelsDone = new boolean[labels.length];
9 labelsDone[j] = true;

10 done.put(i, labelsDone);
11 }
12 else if (labelsDone[j])
13 if (labelAcc < labelsDone.length)
14 return this.mutate(i,(j+1)%labelsDone.length,labelAcc+1,stateAcc

);
15 else if (stateAcc < states.length){
16 Pair iprime = new Pair(i.getA(),(i.getB()+1)%states.length);
17 return this.mutate(iprime,j,1,stateAcc+1);
18 }
19 else{
20 Pair iprime = new Pair((i.getA()+1)%states.length,i.getB());
21 return this.mutate(iprime,j,1,1);
22 }
23 else
24 labelsDone[j] = true;
25

26 LTS<StateImpl, TransitionImpl> mutant = toMutate.clone();
27 TransitionImpl newTransition = new TransitionImpl(labels[j]);
28 if (!mutant.hasTransition(states[i.getA()], states[i.getB()], labels[j])){
29 mutant.addTransition(newTransition, states[i.getA()], states[i.getB()])

;
30 acc = 0;
31 return mutant;
32 }
33 else
34 if (labelAcc < labelsDone.length)
35 return this.mutate(i,(j+1)%labelsDone.length,labelAcc+1,stateAcc

);
36 else if (stateAcc < states.length){
37 Pair iprime = new Pair(i.getA(),(i.getB()+1)%states.length);
38 return this.mutate(iprime,j,1,stateAcc+1);
39 }
40 else{
41 Pair iprime = new Pair((i.getA()+1)%states.length,i.getB());
42 return this.mutate(iprime,j,1,1);
43 }
44 }
45 return null;
46 }

Listing 4.6: The overload of the IOT mutate() method.

4.3 The checkProp package

The most important class in this package is the Checker class. This class contains the
different property checks made on the mutants.

The implementation of the full-control property is straightforward from the definition
from Section 3.3.1. The idea is to combine the initial state of the system model and of
the mental model in a composite state. This is done in order to make the composition
of the two models. Then, the composition is build by following synchronized paths, i.e.
transitions available in both corresponding states at the same time. Then we check that in

-32-

4.3. THE CHECKPROP PACKAGE

each of the composite states, the user is able to see at least all the observations going out
of the corresponding system model state and do all the commands from the corresponding
system model state and just those ones.

The implementation is just a traversal of the composition of the two models which
stops as soon as there is a missing observation, a missing command or an extra command.
Since it is on this algorithm that all the other are based, the skeleton of it is given in
Algorithm 2.

Algorithm 2: Skeleton of the full-control check algorithm
Input: system an LTS which represents the system model
Input: mental an LTS which represents the mental model

1 toExplore = {newCompState(system.initialState,mental.initialState)};
2 while toExplore 6= {} do
3 cur ← toExplore.next();
4 toExplore← toExplore \ {cur};
5 if cur /∈ explored then
6 explored← explored ∪ {cur};
7 end
8 if !cond then
9 doStuff();

10 end
11 foreach

cmpState ∈ genReachableCmpState(cur.systemstate, cur.mentalstate) do
12 if cmpState /∈ explored ∧ cmpState /∈ toExplore then
13 toExplore← toExplore ∪ {cmpState};
14 end
15 end
16 end

This algorithm is voluntarily provided with unfilled parts. That is because those parts
changed in the alternatives detailed here. For the full-control in itself, cond has to be
replaced by the condition explained in Section 3.3.1. If this condition is not filled, then
it means that mental does not have full-control on system and doStuff() should just
return false.

Since a mental model having full-control on a system is very sensitive to mutations
because of the strength of the property, the mutants do not have many chance of success
on this check. This is why some statistics are computed to see to what extent the full-
control is lost. The main idea of this approach is to be able to see the coverage of the
full-control remaining after a mutation. This is done in two ways. The first one is just
to record each of the errors in the traversal of the composition but without stopping it.
Doing so, we are able to see which are the missing observations and the missing/extra
commands in each composite state. For this algorithm, cond is the same has above but
if the condition is not filled, then doStuff() does not stop the execution but makes a
record by filling an StatTableEntry with either an extra command, a missing command
or a missing observation.

The StatTableEntry class is also in this package. This is just a type which allows the
algorithm to make some statistics about the errors detected in the full-control checks. It
also records the difference between the number of states in the original composition and

-33-

4.4. USAGE

in the composition being currently build.
The second way is to use the notion of mode and to stop the traversal on the states

where there is mode confusion, i.e. when in a composite state the mode of the correspond-
ing mental state is no longer the same as the one of the system state. This approach
allows us to see the border of the full-control. It lets us know to what extent this mutated
composition is a sub-graph of the original composition. Nevertheless, this technique has
a main drawback which is that it could consider a full-control pair of models being not
full-control if the full-control composition contains some mode-confusing composite states.
Such states does indeed not lead necessary the system to a loss of full-control. But this will
be detected by the other checks and the advantage of this variant is that we can clearly see
where there is mode confusion and where the “full-control” zone stops. In this algorithm,
cond and doStuff() are the same as above, but the condition on line 12 of Algorithm 2
is restricted by adding ∧ cmpState.systemState.mode == cmpState.mentalState.mode.
This condition will prevent the algorithm to explore further the graph when a composite
state has mode confusion.

The last variant is the alternative full-control. The implementation of this check is
again straightforward from the definition given in Section 3.3.2. The only variance with
the full-control implementation is that this time, the system state should just contain
at least the commands available in the corresponding mental state but on the contrary,
a missing command in the mental state is no more a fault with respect to this property.
This time, cond becomes the condition detailed in Section 3.3.2 and doStuff() just return
false if this condition is not filled.

The reachability property is checked during a traversal. This is just a pattern on the
name of a state and this is done by checking if the name of cur in the algorithm matches
or not the pattern.

4.4 Usage

The usage of mentalRate is indeed very simple. The user just has to enter the two
“.lts” files containing the description of both the mental and the system model. He may
also limit the number of generated mutants for each mutation operator.

When the program has been run by:

$ java -jar mentalRate.jar therac-mental.lts therac-system.lts 600

An output like the following one is generated for each mutation operator so this is only
a snippet of the complete output produced and it is provided as an example. It is also
recommended to redirect the standard output to a file.

1 therac-mental used as the mental model for the therac-system system model.
2

3 600COL mutants
4 #Extra states (mean in %): 1.27
5

6 #Missing Commands (mean in %): 4.66
7

8 #Extra Commands (mean in %): 4.37
9

10 #Missing Observations (mean in %): 7.08
11

12

13 fullControl: 0
14 statFullControl: 0

-34-

4.4. USAGE

15 mutants StatModeFC: 0
16 alternativeFullControl: 56
17

18 Kills: 54
19

20 [...]

The first line appears only once and just recalls the name of the models used. Then
the number of generated mutants for the COL mutation operator is given (in this case 600
since the number of possibly generated mutants with those models exceeds this maximum).
Then some proportions are provided on the mean percentage of different errors among the
mutants. Then, the number of mutant having full-control on the system is given. This
number should be equal to the two following ones which are just reports on statistics. At
line 16 is given the number of mutant having the alternative full-control on the system.
Finally, the number of mutants killing unwillingly the patient is given.

-35-

4.4. USAGE

-36-

CHAPTER

FIVE

EXPERIMENTS

This chapter is the core of this master thesis. It explains the experiments that were
made and the models on which they were made in order to make those experiments repro-
ducible by whoever is interested in the subject and wants to reproduce them. So first, the
experiments are explained on a simpler model which is the one of a vehicle transmission
system, the gearbox model. Then, the following section looks at the results given by the
case study, the Therac-25. An analysis is made on those results in the last section.

5.1 Tests on the gearbox model

This section presents the model on which was made all the testing and validation part
of this project. It also provides the different results obtained with this model in order to
see what information is produced by the mentalRate tool and how to process it.

5.1.1 The model

The gearbox model is a model of the transmission system of a vehicle. As mentioned
before, this example is taken from [HD07]. Figure 5.1 is a representation of this model.

high-1 high-2 high-3

medium-1 medium-2

low-1 low-2 low-3
up

down

up

down

up

down

up

down

up

down

push-up push-up pull-down
pull-down

push-up

push-up push-up
pull-downpull-down pull-down

Figure 5.1: The vehicle transmission system example (from [CP09]).

This system contains eight states among which are three distinct operating modes: low
(in light grey), medium (in dark grey) and high (in black). The alphabet of this model is
composed of two commands: {pull-down, push-up} and two observations: {down, up}.

-37-

5.1. TESTS ON THE GEARBOX MODEL

This model is small, but not as simple as it appears to. The corresponding minimal mental
model generated by the minimization-based approach presented in Setcion 3.4.1, is not a
simple three states LTS with just a “low”, a “medium” and a “high” state because when the
user is in the low mode, a push-up command may lead him either in medium either in high
mode, depending on internal transitions observable by the driver. So, this distinction has
to be present in the simplest mental model and this is what makes this model interesting
and not so trivial. This simplest mental model is the one presented on Figure 5.2 in which
the corresponding modes have been highlighted with the same background colors.

high

medium

low-a low-b low-c
up

down

up

down

push-up push-up pull-down

push-up pull-down

push-up

up, down

up, down

Figure 5.2: The minimal full-control mental model for the vehicle transmission system
(from [CP09]).

In order to have some point of comparison, the system can also be considered as a
mental model in itself. Of course, a system model may always be considered as a mental
model but as discussed earlier, the goal of a mental model is to be an abstraction of the
system in order to be simpler.

5.1.2 Preliminary results

Here are provided and explained some results obtained on the gearbox model. The
main goal is to show which kind of results are produced and what can be learned from
them. This first glance is a way to get familiar with this kind of results before analyzing
the data obtained from the Therac-25 model.

In the table 5.1 are provided the number of mutants produced for each mutation
operator for each of the two configurations: the minimal mental of Figure 5.2 evaluated
with the system and using the system model as its own mental model. In this table are also
provided the amount of mutants that passed the full-control property (FC in the table)
and the alternative full-control property (Alt-FC in the table).

Quick analysis

In this point are exposed the reasons which make that a specific mutant passes the
FC or the Alt-FC test. Those reasons are dependent on the structure of the graph of the
considered mutated model. And since those specifics structures are often found in other
models, those reasons are generic and the related explanations apply also for the case
study and any other application.

In the case of the COL (change of label) operator, the mutants succeed the alternative
full-control when a label representing a command is replaced with a label representing an

-38-

5.1. TESTS ON THE GEARBOX MODEL

Mental used Minimal mental model System model
States 5 8
Transitions 14 20

mutants # FC # Alt-FC # mutants # FC # Alt-FC
COL 42 0 2 (4.8%) 60 0 8 (13.3%)
IOT 86 10 (11.6%) 10 (11.6%) 236 48 (20.3%) 48 (20.3%)
MOT 14 0 6 (42.9%) 20 0 10 (50%)
MOT2 14 0 0 20 0 0
MOT3 14 0 0 20 0 1 (5%)
ROT 14 4 (28.6%) 5 (35.7%) 20 0 0
SSC 4 0 0 7 0 0

Table 5.1: Amount of mutants generated for each type of mutation operator.

observation not yet going out of the corresponding mental state. This produces indeed
a missing command in the mental model, making it fail the full-control test. However,
since in the alternative version of this property the mental is not required to have all
the commands, the test passes for this mutant. If the label was changed into an already
outgoing label, then it would have induced non-determinism in the composition (which is
not prohibited) and this increase the chances of loosing full-control. If the non-determinism
lead to a composite state where the mental and the system are not full-control equivalent,
then the full-control does not hold any more.

For IOT (insertion of transition), we can observe for the first time full-control mutants.
We can see that the number of mutants succeeding Alt-FC is the same that the number
succeeding FC and this in the two experiments. This is not accident, the mutants succeed-
ing FC are the same as those succeeding Alt-FC. This is due to the definition of Alt-FC
which is, as mentioned in Section 3.3.2, a weaker version of FC.

For the MOT (missing of transition) operator, the mutants succeeding Alt-FC are
just corresponding to the mutated model with one command having been removed. By
definition of Alt-FC, again, the user is not forced to do any command.

The MOT3 mutant succeeding the Alt-FC check is not a generic case. The correspond-
ing LTS is drawn on Figure 5.3. The mutation in this case has been the removing of the
pullDown transition between the medium1 and the low3 state. The result is a merged
state between those two mental states. This mutant does not passes the FC check since
the pullDown command is not anymore available from the corresponding mutated mental
state. But since in the Alt-FC, the mental is not forced to have all commands, the check
passes. This is also due to the fact that the same observations are available in both modes,
otherwise there would have been some missing observations.

The four ROT (reverse of transition) mutants succeeding the FC check are a kind
of trivial ones. They correspond indeed to the reversal of the self-loops representing the
observations on the medium and high mental model. These mutants are produced because
self-loops are not detected by the mutation operator. This is an example of equivalent
mutants.

However, the fifth one, succeeding only the Alt-FC check is more interesting. It suc-
ceeds because one part of the LTS is isolated following the reversal of the transition. Since
the only way out was a command and that it is not a fault if this command misses, the
mutant succeeds the test. This mutant is drawn on Figure 5.4. In fact, it is even more
complicated since the reversed command must have been one with a label already going

-39-

5.1. TESTS ON THE GEARBOX MODEL

Figure 5.3: The MOT3 mutant succeeding Alt-FC.

out of the medium state, otherwise there would have been an extra command which is a

Figure 5.4: The ROT mutant succeeding only Alt-FC.

-40-

5.1. TESTS ON THE GEARBOX MODEL

fault to the full-control property.

Some generated models

As an illustration of the kind of models produced by the tool, here are provided some
LTSs which represent the outputs of the different checks made for the full-control property
as explained in Section 4.3. Figure 5.5 represents a COL mutant, where the label of the
down transition from lowB to lowA has been changed in pushUp. This mutated mental will
of course fail the check on the full-control and alternative full-control property because of
the non-determinism generated by two outgoing transitions with the same label from an
unique state and also because of the missing down observation. The composition stopped
at the first mode confusion is shown at Figure 5.6 while the full composition is provided
in Figure 5.7. The composite states with mode confusion have a diamond shape. What is
interesting to observe is the comparison between those two compositions which allows to
see where exactly the mental fails and how the user is able to misunderstand and misuse
the system. An other interesting observation to make is that in Figure 5.7, there exists a
path, through mode-confusing composite states, which comes back to the full-control zone
(the oval shaped states). This means that, even with a wrong mental model, the user is
able to do a valid sequence of actions without problem.

Figure 5.5: A COL mutated mental.

-41-

5.1. TESTS ON THE GEARBOX MODEL

Fi
gu

re
5.
6:

T
he

co
m
po

sit
io
n
of

a
C
O
L
m
ut
at
ed

m
en
ta
lw

ith
th
e
sy
st
em

m
od

el
st
op

pe
d
w
he

n
th
er
e
is

m
od

e
co
nf
us
io
n.

-42-

5.1. TESTS ON THE GEARBOX MODEL

Figure 5.7: The composition of a COL mutated mental with the system model.

-43-

5.2. CASE STUDY: THE THERAC-25

5.2 Case study: the Therac-25

This section is about the presentation of the main example of this master thesis. The
experiments are made with the Therac-25 model which is used as a case study. The results
are quite interesting since they show that the idea at the origin of this master thesis was a
good one and brings some real opportunities. The aim of this case study is to see whether
the tools and techniques developed in the scope of this master thesis are well founded and
give results on a “real-life” model.

First, the model and the mental models used are presented. Then the results are
analyzed with two different approaches: an analysis of the mutants generated and then an
analysis of the results of the checkProp tool.

5.2.1 Presentation of Therac-25

The Therac-25 was a medical device which caused the death of patients due to flaws
in the design of the interface. This machine has been widely studied in the literature, see
for example [LT93] or [BBS08].

The Therac-25 is a radiation therapy machine able to operate in two modes. In the first
one, the machine administers electron beams, which deliver high-energy electrons (between
5 and 25 MeV). The second is the X-ray mode which is intended to work deeper in the
tissues and use high-energy collisions (25 MeV) between electrons in order to produce
the X-rays. The important difference between those modes, which is at the origin of the
reputation of the device, is that in X-ray mode, the machine puts a beam flattener in the
path of the X-rays in order to spread the treatment over a uniform area. This spreader is
not used in the electron beam mode and an administration of X-rays without this spreader
may harm or even kill the patient. This mechanism is illustrated in Figure 5.8.

Figure 5.8: The two operational modes of the Therac-25 (from [Gal11]).

A formal model of the system has been proposed in [BBS08] on which is based the one
used in this master thesis. It is provided as a state chart at Figure 5.9. On this picture,
the interface proposed to the administrator is shown on the left while the actual device
model is on the right. The alphabet of this system is simple. Each of the commands were
available on the keyboard of a computer outside of the treatment room and this is why to
each command corresponds a keystroke. The “x” keystroke is the selectX command and
allows the user to switch to the X-ray mode. The corresponding key for the electron mode
is “e” for selectE. The up command allows the administrator to cancel its last action in
the planning of the treatment, the corresponding key is ↑. The last command is the fire
one and the corresponding key is . This last command allows to administer the planned

-44-

5.2. CASE STUDY: THE THERAC-25

treatment. To complete the alphabet, there are also two observations, the reset one which
happens after a firing in the system and could correspond to the return key after pushing
“b” and an observation 8seconds which corresponds to an automatic timeout after which
the switch between the two modes is actually made. This immediately highlights the flaw,
since this observation is not shown in the interface.

Figure 5.9: The formal model of the Therac-25 from [BBS08].

From this model, the problem is that the administrator can not observe the change of
mode when eight seconds pass. This results in a mode confusion. The administrator thinks
he is still in a mode while indeed he is in the other one. This is due to an automatic reset of
the system after eight seconds. So, if the administrator does the following sequence in less
than this timeout: selectE, up, selectX, fire, the X-ray is sent without the spreader.
This sequence corresponds to the administrator choosing the wrong mode, pushing the ↑
key to cancel and pressing “x” to go in the wished mode. The system is then either in
X-ray or in electron beam mode depending on the timeout.

5.2.2 Different mental models

Based on the model presented above, the system used is an enriched version of the
Therac-25 model. In fact, mode observations had been added to the system in order to
model the fact that we want the user to know at each moment in which mode the system
operate. To do so, self-loops have been added in the mental states. But since, in the full-
control property, we want to enforce the modes being known, those self-loops are treated
as commands. The intuition is that those transitions have to be there otherwise it would
mean that the user does not know the mode.

For this system model, two mental models have been created. Both were generated
from the system model using the learning-based variant described in Section 3.4.2.

In the following, we call “first” the mental model corresponding to the upper bound of
the learned 3DFA and its minimization is called the “second” mental. The first is made of
64 states and 224 transitions while the second one is made of 24 states and 102 transitions.

The goal of having two different mental models for the same system model is to have
different levels of abstraction with respect to the system. Again, since the aim of this
master thesis is to be able to rate the robustness of a mental model, it is very interesting

-45-

5.2. CASE STUDY: THE THERAC-25

to be able to compare the results for different mental models and verify whether a more
redundant model is indeed well evaluated.

5.2.3 Results

In Table 5.2 and Table 5.3 are provided the results of the analysis on the different
properties for each mutation operator, respectively for the first and the second mental
model. As a recall, the analyzed properties for the case study are the full-control, the
alternative version of the full-control and a reachability property. This last property
aims to see whether the mutants allow to kill a patient unintentionally. This is done by
traversing the composition of a mutant with the system model and searching for a state
where there is mode confusion and where the spreader is out of place, the beam mode is
X-ray and the beam has been fired.

As explained before, the number of possible mutants for the COL and IOT mutation
operators are big and so the generation is limited to 600 mutants of each type.

Mental used Mental model 1
States 64
Transitions 224

mutants # FC # Alt-FC # Kills
COL 600 0 57 (9.5%) 49 (8.2%)
IOT 600 66 (11%) 66 (11%) 64 (10.66%)
MOT 224 0 154 (68.7%) 0
MOT2 224 0 44 (19.6%) 50 (22.3%)
MOT3 224 0 44 (19.6%) 74 (33%)
ROT 224 44 (19.6%) 64 (28.6%) 0
SSC 63 5 (7.9%) 5 (7.9%) 0

Table 5.2: Results for the first mental model for the Therac-25.

Mental used Mental model 2
States 24
Transitions 102

mutants # FC # Alt-FC # Kills
COL 600 0 12 (2%) 99 (16.5%)
IOT 600 15 (2.5%) 15 (2.5%) 86 (14.3%)
MOT 102 0 58 (56.9%) 0
MOT2 102 0 16 (15.7%) 36 (35.3%)
MOT3 102 0 16 (15.7%) 47 (46.1%)
ROT 102 24 (23.5%) 30 (29.4%) 24 (23.5%)
SSC 23 1 (4.3%) 1 (4.3%) 0

Table 5.3: Results for the second mental model for the Therac-25.

At first glance, the proportion of mutants passing the checks is greater for most of the
mutation operators for the first mental model while the proportion of kills is smaller. This
is what should be expected of a more robust mental model.

As mentioned in Section 5.1.2, most of the patterns found in the results of the gearbox
models are still visible here and the explanations, which we supposed to be generic, are

-46-

5.2. CASE STUDY: THE THERAC-25

indeed also relevant in the Therac-25 case. Some differences are nevertheless observable.
Among them there are some new categories of mutants passing the tests.

In the gearbox results, there were no MOT2 mutant succeeding the Alt-FC test. With
the Therac-25 results there are some. Moreover in exactly the same proportion as with the
MOT3. There is no coincidence here, this is due to the self-loops of the modes. Indeed,
the MOT2 and MOT3 mutation operators applied on a self-loop transition do not modify
any other part of the graph. So, they just remove the transition in this case and this
produces a mutated mental model that is still Alt-FC, since the user is allowed to have
missing commands.

Another difference is that now, there are also SSC (starting state changed) mutants
passing the tests. The main reason to this is because there are some equivalent initial
states in the system from which the user can get back in the official initial system state
without any confusion.

Regarding the kills, we can also see that the proportion of mutants killing the patient
in an undesired way is greater in the second mental model.

5.2.4 checkProp analysis

As described in Section 4.3, some statistics are also computed during the different
checks being made. Those statistics represent the mean amount of missing/extra states,
missing/extra commands, and missing observations among the mutants. Table 5.4 provides
those statistics for the second mental model test.

Missing States # Missing Commands # Extra Commands # Missing Obs
COL -0.9 7.02 6.66 1.48
IOT -1.45 5.61 6.3 0.25
MOT 0.96 0.98 0 0.98
MOT2 -4.54 16.72 14.68 2.98
MOT3 14.77 18.4 20.53 1.37
ROT -0.6 8.49 8.06 1.81
SSC 95.42 0.19 0.16 0

Table 5.4: Statistics for the second mental model for the Therac-25. The values are
percentage. In the “Missing States” column, a negative value means that there were
extra states. The three other columns are mean values among all the mutants and a

value for a mutant is the average value for all its states.

Values near from zero are frequent; their meaning is that the mutated models are not
far from a full-control. At least, they are interpreted like this in correlation with the other
results. It is also interesting to see the impact of MOT2 and MOT3 which induce a lot of
mess in the commands. The last interesting number is the huge amount of missing states
in the SSC mutants since when an initial state is changed in such a way that the mental
can not handle it, then all the rest of the composition is lost. This reflects well the results
obtained above for this mutation operator.

-47-

5.3. ANALYSIS

5.3 Analysis

This section puts the different concepts in perspective with the assumptions of this
master thesis in regard of the results obtained. First, the choice of the mutants will be
discussed, then the properties and finally the robustness rate.

5.3.1 About the mutants

The chosen mutation operators model knowledge imperfections of a user in front of a
system. The significance of those has already been discussed. But after seeing the results,
the relevance of each of them is to be discussed. The criteria for a mutation operator to
be relevant in the scope of this master thesis is its generated mutants passing the checks
involving a certain robustness of the system. It is also the highlighting of nuanced results.

The COL and IOT mutation operators are both interesting ones, since they bring a
lot of interesting results. The interpretations made about the corresponding operation
errors still leads to mutants passing the FC and Alt-FC tests and this means that the
system is sufficiently robust to manage such imperfections in some cases. Nevertheless,
the main drawback of those mutation operators is the potentially huge amount of mutants
generated.

The MOT mutation operator seems too trivial to produce interesting results. While the
MOT3 one has shown in the different cases some interesting results. It has the advantage
of being a good representation of a forgotten transition.

The ROT mutation operator also brought some good results especially when isolating
a part of the graph and allowing to pass the Alt-FC test. The interpretation on the
robustness of the system made above also holds for this mutation operator

And finally, regarding the SSC mutation operator, the results were interesting when
the system was sufficiently flexible and observable to allow a user in a wrong starting state
to handle the mutation and get full-control nevertheless.

5.3.2 About the properties

We have often seen that the full-control property is very strong. Indeed, an initial
concern when we started this work was all the mutants failing this check because of it. As
it turns out, this property is very interesting since passing its check means a lot in terms
of interpretation. It means that the system model is robust enough to be able to manage
operation errors of the user in some case.

Since this property check is a little bit radical, statistics have also been made. And
most of the mutant not passing the full-control test have nevertheless a quite good coverage
of the composition on average. A lot of statistics were close to zero and not very relevant
but the ones for the MOT2, MOT3 and SSC mutants allows us to see that those mutation
operators were the most devastating on the mental model.

The idea of the alternative full-control is also very interesting since it brought more
successful results for the mutants and it represents more accurately the “real world” since
this property lets the user chose to not make a command.

Regarding the last property studied, which is the reachability for the killing composite
states, the observations made are also in the sense of a good evaluation of the robustness
of a mental model. This property highlighted the fact that, in this specific case, a wrong
composite state was on average less reachable with a more robust system.

-48-

5.3. ANALYSIS

5.3.3 About the robustness

The whole point of this master thesis was to elaborate an evaluation of the robustness
of a mental model with respect to some properties and mutation operators. The process
which has been proposed answers to this problematic, not by giving an actual rate but by
providing some results which still need to be analyzed. The results are the succeeding rates
of the mutants again meaningful properties and the analysis which needs to be done is
see whether the succeeding rates are sufficiently high to evaluate the system as sufficiently
robust.

In this master thesis, we compared each time two mental models for the same system in
order to have a point of comparison. And this highlighted that the process was indeed well
designed. A user of this framework would have to defined his own acceptance threshold to
fulfill his robustness requirements based on the outputs of the tool for its mental model.

-49-

5.3. ANALYSIS

-50-

CONCLUSION

The main goal of this master thesis was to see if it was possible to associate human-
machine analysis and mutation-based testing in order to evaluate the robustness of mental
model facing manipulation errors. The conclusions are that this is indeed doable and this
document provide a background, a framework and discussions about the way to implement
this association.

The main results of this thesis are:

• A set of mutation operators which are detailed and studied. Those mutation opera-
tors have been chosen among the literature and based on common sense. A further
step in this direction could be to study how well they model actual operation errors,
to find a way to validate them as good representation of human misuse, to enrich the
set with other mutation operators modeling other imperfections. Another direction
to improve this set could be to use the amelioration techniques detailed for mutation
operators in general in Section 2.1 and applied them to this set in order to refine the
selection. The technique appearing to be the most promising seems to be the mutant
reduction since some mutation operators generate a huge amount of mutants.

• A methodology proposed to study the robustness of a mental model. Some properties
chosen among existing ones and new ones have been used in order to be able to
evaluate the quality of the mutants. This methodology has been tested through the
gearbox model and the Therac-25 model. The results have been analyzed and prove
that there is a real opportunity in this approach. It has indeed been shown that more
redundant mental models were better able to resist manipulation errors, as intended
at the beginning of this work. To enforce those results, a further application could
be to test the difference between a system and a modified version of this system
model with added redundancy in order to confirm the analyze made in this work.

• An implemented framework which is able to produce data to be analyzed in a de-
scribed way in order to evaluate the robustness of a given mental model. This
framework is extensible and allows to generate mutants according to a given set of
mutation operators detailed in Section 3.2 and to check the properties described in
Section 3.3 on the generated mutants. The output of this process is statistics about
the passing rate of the mutants against those properties.

• A major learning for me as a student. I indeed had a lot to learn through this year’s
work. Having a whole project on my own, managing the time, discovering new
theoretical fields through articles and a lot of other things related to redaction, the

-51-

5.3. CONCLUSION

implementation and conclusion of such a work have been difficult tasks to overcome
but not without work and pride.

-52-

BIBLIOGRAPHY

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples* 1. In-
formation and computation, 75(2):87–106, 1987.

[BBB90] G. Britain, A.A.I. Branch, and G. Britain. Report on the Accident on Boeing
737-400 G-OBME Near Kegworth, Leicestershire on 8 January 1989. HMSO,
1990.

[BBS08] ML Bolton, EJ Bass, and RI Siminiceanu. Using formal methods to predict
human error and system failures. 2008.

[BDLS80] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Theoretical and
empirical studies on using program mutation to test the functional correctness
of programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 220–233. ACM, 1980.

[BG06] H. Bowman and R. Gomez. Concurrency theory: calculi and automata for
modelling untimed and timed concurrent systems. Springer-Verlag New York
Inc, 2006.

[Blo08] J. Bloch. Effective Java. Prentice-Hall PTR, 2008.

[Byb03] M. Bybro. A mutation testing tool for java programs. Master’s thesis, Stock-
holm University, Stockholm, Sweden, 2003.

[CFC+09] Y.F. Chen, A. Farzan, E. Clarke, Y.K. Tsay, and B.Y. Wang. Learning mini-
mal separating dfa’s for compositional verification. Tools and Algorithms for
the Construction and Analysis of Systems, pages 31–45, 2009.

[CGP] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. 2000.

[CH03] J.C. Campos and M.D. Harrison. From hci to software engineering and back.
Bridging the Gaps Between Software Engineering and Human-Computer In-
teraction, page 49, 2003.

[CH08] J. Campos and M. Harrison. Systematic analysis of control panel interfaces us-
ing formal tools. Interactive Systems. Design, Specification, and Verification,
pages 72–85, 2008.

[CHL04] J.C. Campos, M.D. Harrison, and K. Loer. Verifying user interface behaviour
with model checking. In Proceedings of the 2nd International Workshop on
Verification and Validation of Enterprise Information Systems, pages 87–96.
Citeseer, 2004.

-53-

BIBLIOGRAPHY

[CP09] S. Combéfis and C. Pecheur. A bisimulation-based approach to the analysis
of human-computer interaction. In Proceedings of the 1st ACM SIGCHI sym-
posium on Engineering interactive computing systems, pages 101–110. ACM,
2009.

[CPGF] Sébastien Combéfis, Charles Pecheur, Dimitra Giannakopoulou, and Michael
Feary. Learning system abstractions for human-machine interactions. Not yet
published.

[CRB07] P. Curzon, R. Rukšėnas, and A. Blandford. An approach to formal verification
of human–computer interaction. Formal Aspects of Computing, 19(4):513–550,
2007.

[DCH00] G.J. Doherty, J.C. Campos, and M.D. Harrison. Representational reasoning
and verification. Formal Aspects of Computing, 12(4):260–277, 2000.

[Deg04] A. Degani. Taming HAL: Designing interfaces beyond 2001. Palgrave Macmil-
lan, 2004.

[DLS78] Richard A. DeMillo, Richard J. Lipton, and Frederick Gerald Sayward. Hints
on test data selection: Help for the practicing programmer. Computer,
11(4):34–41, April 1978.

[FDMM02] P.F. Fabbri, ME Delamaro, JC Maldonado, and PC Masiero. Mutation analy-
sis testing for finite state machines. In Software Reliability Engineering, 1994.
Proceedings., 5th International Symposium on, pages 220–229. IEEE, 2002.

[Gal11] T. Gallagher. Therac-25 computerized radiation therapy. http://www.
kellyhs.org/itgs/ethics/reliability/THERAC-25.htm, May 2011.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11):1203–1233, 2000.

[Ham77] R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, pages 279–290, 1977.

[HD07] M. Heymann and A. Degani. Formal analysis and automatic generation of
user interfaces: Approach, methodology, and an algorithm. Human Factors:
The Journal of the Human Factors and Ergonomics Society, 49(2):311, 2007.

[JH10] Yue Jia and Mark Harman. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions of Software Engineering, To appear,
2010.

[JP] D. Javaux and P.G. Polson. A method for predicting errors when interacting
with finite state machines. Javaux and De Keyser [5].

[KO91] K.N. King and A.J. Offutt. A fortran language system for mutation-based
software testing. Software: Practice and Experience, 21(7):685–718, 1991.

[LDL09] J. Li, G. Dai, and H. Li. Mutation Analysis for Testing Finite State Machines.
In 2009 Second International Symposium on Electronic Commerce and Secu-
rity, pages 620–624. IEEE, 2009.

-54-

http://www.kellyhs.org/itgs/ethics/reliability/THERAC-25.htm
http://www.kellyhs.org/itgs/ethics/reliability/THERAC-25.htm

BIBLIOGRAPHY

[Lip71] R. Lipton. Fault Diagnosis of Computer Programs. Student Report, Carnegie
Mellon University, 1971.

[LT93] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[OAL07] J. Offutt, P. Ammann, and L. Liu. Mutation testing implements grammar-
based testing. In Mutation Analysis, 2006. Second Workshop on, page 12.
IEEE, 2007.

[OL91] A.J. Offutt and S.D. Lee. How strong is weak mutation? In Proceedings of
the symposium on Testing, analysis, and verification, pages 200–213. ACM,
1991.

[ORZ93] A.J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selec-
tive mutation. In Proceedings of the 15th international conference on Software
Engineering, pages 100–107. IEEE Computer Society Press, 1993.

[OU01] A.J. Offutt and R.H. Untch. Mutation 2000: Uniting the orthogonal. In
Mutation testing for the new century, page 44. Kluwer Academic Publishers,
2001.

[Rus02] J. Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering & System Safety, 75(2):167–177,
2002.

[TG08] H. Thimbleby and J. Gow. Applying graph theory to interaction design.
Engineering Interactive Systems, pages 501–519, 2008.

[Wah95] KS Wah. Fault coupling in finite bijective functions. Software Testing, Veri-
fication and Reliability, 5(1):3–47, 1995.

[Wah00] K.S.H.T. Wah. A theoretical study of fault coupling. Software testing, verifi-
cation and reliability, 10(1):3–45, 2000.

[WM95] W.E. Wong and A.P. Mathur. Reducing the cost of mutation testing: An
empirical study. Journal of Systems and Software, 31(3):185–196, 1995.

-55-

BIBLIOGRAPHY

-56-

Appendices

-57-

APPENDIX

A

API OF THE LTS PACKAGE

For more information about those implementations, read Section 4.1

A.1 Interfaces

A.1.1 LabelIF

Enum

Define the different available types of label
public static enum LabelType;

Methods

Get the name of the label
Pre:-
Post: The returned value contains the name of the label
public String getName();

Get the type of the label
Pre:-
Post: The returned value contains the type of the label
public LabelType getType();

A.1.2 StateIF

Methods

Get the name of the state
Pre:-
Post: The returned value contains the name of the state

-59-

A.2. ABSTRACT CLASSES

public String getName();

Get the type of the state
Pre:-
Post: The returned value contains the mode’s value of the state
public Integer getMode();

Override
public String int toString();

A.1.3 TransitionIF

Methods

Get the label associated with the transition
Pre:-
Post: The returned value contains the label associated with this transition
public LabelIF getLabel();

Get the unique identifier of the transition
Pre:-
Post: The returned value contains the unique identifier of the transition
public UUID getID();

A.2 Abstract classes

A.2.1 StateAbstract

implements StatelIF

Methods

Override
public abstract boolean equals (Object o);

Override
public abstract int hashCode();

A.2.2 TransitionAbstract

implements TransitionIF

-60-

A.3. CLASSES

Methods

Override
public abstract boolean equals (Object o);

Override
public abstract int hashCode();

A.3 Classes

A.3.1 LabelImpl

implements LabelIF

Fields

private final String name;
private final LabelType type;

Constructor

Pre: name, type != null
Post: An instance of this is created, representing a label with specified name and type
public LabelImpl (String name, LabelType type);

Methods

Overrides
public boolean equals (Object o);

Overrides
public int hashCode();

A.3.2 StateImpl

extends StateAbstract

Fields

private final String name;
private final Integer mode;

-61-

A.3. CLASSES

Constructors

Pre: name, mode != null
Post: An instance of this is created, representing a state with specified name and mode
public StateImpl (String name, Integer mode);

Pre: name != null
Post: An instance of this is created, representing a state with specified name
public StateImpl (String name);

Methods

Override
public String int toString();

A.3.3 CompState<S extends StateAbstract>

extends StateAbstract

Fields

private final String name;
private final Integer mode;
private final S systemState;
private final S mentalState;

Constructors

Pre: systemState, mentalState != null
Post: An instance of this is created, representing a composite state with specified system
state and mental state
public CompState(S systemState, S mentalState)

Methods

Get the system state
Pre:-
Post: The returned value contains the system state
public S getSystemState();

Get the mental state
Pre:-
Post: The returned value contains the mental state

-62-

A.3. CLASSES

public S getMentalState();

Override
public String int toString();

A.3.4 TransitionImpl

extends TransitionAbstract

Fields

private final LabelIF label;
private final UUID id;

Constructors

Pre: label != null
Post: An instance of this is created, representing a transition with specified label
public TransitionImpl(LabelIF label)

Methods

Override
public String int toString();

A.3.5 LTS<S extends StateAbstract, T extends TransitionAbstract>

implements Cloneable

Fields

private S initialState;
private HashSet<LabelIF> labelsSet;
private HashMap<S, InnerState<S, T» statesMap;
private HashMap<T, InnerTransition<S, T» transitionsMap;
private int nbrCmds = 0, nbrObs = 0;

Constructors

Pre: -
Post: An instance of this is created, representing an LTS
public LTS();

-63-

A.3. CLASSES

Pre: initialState, states != null, initialState ∈ states
Post: An instance of this is created, representing an LTS with specified states and initial
state
public LTS(S initialState, Collection<S> states);

Create a new instance given an initial state, a collection of states which has to contain
the initial state and a list of transitions. Two other lists of states are provided. The ith
element of from is the starting state of the ith transition and the ith element of to is the
respective ending state of this respective transition.
Pre: initialState, states, transitions, from, to != null, initialState ∈ states
Pre:
Post: An instance of this is created, representing an LTS with specified states and initial
state
public LTS(S initialState, Collection<S> states, List<T> transitions, List<S>
from, List<S> to);

Methods

Add a new state to the LTS. newState cannot be part of the LTS.
Pre: newState != null, newState /∈ LTS
Post: newState has been added to the LTS. If this LTS was empty, newState has been
set to be the initial state of this LTS
public void addState (S newState);

Remove a state from the LTS. delState must be part of the LTS.
Pre: newState != null, newState is a state of this LTS
Post: delState has been removed from the LTS.
public void removeState(S delState);

Add a transition to the LTS.
Pre: newTransition, fromState, toState != null
Pre: fromState, toState are states of this LTS
Post: The returned value contains the label associated with this transition
public void addTransition (T newTransition, S fromState, S toState);

Remove a transition from the LTS. delTransition must be part of the LTS.
Pre: delTransition != null
Post: delTransition has been removed from the LTS.
public void removeTransition (T delTransition);

Check whether transition is already part of the LTS.
Pre: transition != null
Post: The returned value is true if transition ∈ the LTS and false otherwise.
public boolean hasTransition (T transition);

Check whether a transition with source from and destination to and labelled label is
already part of the LTS.

-64-

A.3. CLASSES

Pre: from, to, label != null, from and to are in the LTS
Post: The returned value is true if there is a transition from from to to labelled label.
public boolean hasTransition (S from, S to, LabelIF label);

Get the initial state of the LTS.
Pre: -
Post: The returned value contains the initial state of the LTS
public S getInitialState();

Get the number of commands in the LTS.
Pre: -
Post: The returned value contains the number of commands in the LTS.
public int getNbrCmds();

Get the number of observations in the LTS.
Pre: -
Post: The returned value contains the number of observations in the LTS.
public int getNbrObs();

Get the states of the LTS
Pre: -
Post: The returned value contains the states of the LTS
public Collection<S> getStates();

Get the labels of the LTS.
Pre: -
Post: The returned value contains the labels of the LTS.
public Set<LabelIF> getLabels();

Get the transitions of the LTS.
Pre: -
Post: The returned value contains the transitions of the LTS.
public Set<T> getTransitionSet();

Get the transitions of the LTS with the corresponding source and destination states
Pre: -
Post: Return three lists List<T>,List<S>,List<S>. The first is the list of transitions in
this, the second one is the list of corresponding source states and the third one is the list
of corresponding destination states.
public List[] getTransitions();

Get the ingoing transitions to state with the corresponding source states.
Pre: state != null, state is a state of the LTS
Post: Return two lists List<T>,List<S>. The first is the list of transitions in this and
the second one is the list of corresponding source states.
public List[] getTransitionsTo(S state);

-65-

A.3. CLASSES

Get the outgoing transitions from state with the corresponding destination states.
Pre: state != null, state is a state of the LTS
Post: Return two lists List<T>,List<S>. The first is the list of transitions in this and
the second one is the list of corresponding destination states.
public List[] getTransitionsFrom(S state);

Get the ingoing transitions from a state
Pre: s != null, s is a state of this LTS
Post: The returned value contains the set of transitions whose destination state is the
specified one
public HashSet<T>inTransitions (S s);

Get the outgoing transitions from a state
Pre: s != null, s is a state of this LTS
Post: The returned value contains the set of transitions whose source state is the specified
one
public HashSet<T>outTransitions (S s);

Get the source of a transition.
Pre: t != null, t is a transition of this LTS
Post: The returned value contains the source state of the specified transition.
public S source (T t);

Get the destination of a transition.
Pre: t != null, t is a transition of this LTS
Post: The returned value contains the destination state of the specified transition.
public S destination (T t);

Override.
public LTS<S, T> clone();

Override
public String int toString();

Generate a “.dot” file for the LTS.
Pre: filename != null
Post: A dot file for this LTS has been generated and stored in the file at the specified
location
public void saveAsDotFile (String filename);

-66-

A.4. INNER CLASSES OF LTS

A.3.6 LTSLoader

Methods

Load the LTS from the specified file
Pre: filename != null
Post: The returned value contains the LTS represented in filename if the file exists, null
otherwise
public static LTS<StateImpl,TransitionImpl> loadLTS (String filename);

Save the lts as a “.lts” file.
Pre: filename, lts != null
Post: lts has been save in filename.
public static void saveLTS (LTS<StateImpl,TransitionImpl> lts, String filename);

A.4 Inner classes of LTS

A.4.1 InnerState<S extends StateAbstract, T extends TransitionAbstract>

Fields

private final S state;
private final HashSet<T> in;
private final HashSet<T> out;

Constructors

Pre: s != null
Post: An instance of this is created, representing an internal state with specified S state
public InnerState (S s);

Methods

Get the ingoing transitions.
Pre: -
Post: The returned value contains the set of transitions for which this is the destination
state
public HashSet<T> getInTransitions();

Get the outgoing transitions.
Pre: -
Post: The returned value contains the set of transitions for which this is the source state
public HashSet<T> getOutTransitions();

-67-

A.4. INNER CLASSES OF LTS

Add an ingoing transition to the state.
Pre: newTransition != null
Post: The specified transition has been added at the set of ingoing transitions of this
public void addInTransition (T newTransition);

Add an outgoing transition to the state.
Pre: newTransition != null
Post: The specified transition has been added at the set of outgoing transitions of this
public void addOutTransition (T newTransition);

Remove delT from the ingoing transitions to this.
Pre: delT != null
Post: The specified transition has been removed at the set of ingoing transitions of this
public void removeInTransition (T delT);

Remove delT from the outgoing transitions to this.
Pre: delT != null
Post: The specified transition has been removed at the set of outgoing transitions of this
public void removeOutTransition (T delT);

Override
public String int toString();

A.4.2 InnerTransition<S extends StateAbstract, T extends TransitionAbstract>

Fields

private final T transition;
private final S from;
private final S to;

Constructors

Pre: t, from, to != null
Post: An instance of this is created, representing an internal transition with specified
corresponding transition, source and destination.
public InnerTransition (T t, S from, S to);

Methods

Get the the source state of this.
Pre: -
Post: The returned value contains the the source state of this.
public S getSource();

-68-

A.4. INNER CLASSES OF LTS

Get the the destination state of this.
Pre: -
Post: The returned value contains the the destination state of this.
public S getDestination();

Get the corresponding transition.
Pre: -
Post: The returned value contains the corresponding transition.
public T getTransition();

Override
public String int toString();

-69-

A.4. INNER CLASSES OF LTS

-70-

APPENDIX

B

API OF THE MUT PACKAGE

B.1 Interface

B.1.1 MutOpIF<S extends StateAbstract, T extends TransitionAbstract>

Methods

Get a new random mutant not yet generated by the operator
Pre:-
Post: The returned value contains a new randommutant not yet generated by the operator
public LTS<S, T> mutate();

Get the number of mutants possible to generate
Pre:-
Post: The returned value contains the number of mutants possible to generate
public int getMaxMutants();

Get the name of the mutation operator
Pre:-
Post: The returned value contains the name of the mutation operator
public String getName();

B.2 Abstract classes

B.2.1 MutOpAbsract<S extends StateAbstract, T extends TransitionAbstract>

implements MutOpIF<S, T>

Fields

protected String name;
protected int acc;

-71-

B.3. CLASSES

protected int maxMutants;
protected int maxMutateCalls;
protected LTS<S, T> toMutate;

Methods

Overrides
public int getMaxMutants();

Overrides
public String getName();

B.3 Classes

Since the implementation of each mutation operator are very similar, only the API of
COL (change of label) is provided. The other mutation operators implemented are :

• IOT (insertion of transition)

• MOT (missing of transition)

• MOT2

• MOT3

• ROT (reverse of transition)

• SSC (starting state changed)

For more information about those implementations, read Section 4.2

B.3.1 COL

extends MutOpAbsract<StateImpl, TransitionImpl>

Fields

private Map<Integer, boolean[]> done;
private LabelIF[] labels;
private List<TransitionImpl> transitions;
private List<StateImpl> from;
private List<StateImpl> to;

-72-

B.3. CLASSES

Constructor

Pre: toMutate != null
Post: An instance of this is created, representing the mutation operator COL with spec-
ified model on which mutate.
public COL(LTS<StateImpl, TransitionImpl> toMutate);

Methods

Overrides
public LTS<StateImpl, TransitionImpl> mutate();

Get a new random mutant not yet generated
Pre: i, j, labelAcc ≥ 0
Post: The returned value contains a new random mutant not yet generated.
public LTS<StateImpl, TransitionImpl> mutate(int i, int j, int labelAcc);

B.3.2 Pair

Fields

private final int a;
private final int b;

Constructor

Pre: -
Post: An instance of this is created, representing a pair of integers.
public Pair(int a, int b);

Methods

public int getA() return a; /** * @return the b */ public int getB() return b;
Get the element a of the pair
Pre:-
Post: The returned value contains the first element of the pair
public int getA();

Get the element b of the pair
Pre:-
Post: The returned value contains the second element of the pair
public int getB();

-73-

B.3. CLASSES

Override
public abstract boolean equals (Object o);

Override
public abstract int hashCode();

-74-

APPENDIX

C

API OF THE CHECKPROP PACKAGE

For more information about those implementations, read Section 4.3

C.1 Classes

C.1.1 Checker<S extends StateAbstract, T extends TransitionAbstract>

Fields

private final LTS<S, T> mental;
private final LTS<S, T> system;
private LTS<CompState<S>, TransitionImpl> origComp;
private LTS<CompState<S>, TransitionImpl> lastComp;
private int kills = 0;

Constructor

Pre: system, mental != null
Post: An instance of this is created, representing a property checker with specified system
model and mental model
public Checker(LTS<S, T> system, LTS<S, T> mental);

Methods

Check if the mutant kills involuntarily
Pre:-
Post: The returned value contains true if the composition reaches a state which contains
“spreader=OUT_PLACE,
nbeamFire=FIRED,
nbeamLevel=X_SET” in its name and false otherwise.
public boolean isKilling();

-75-

C.1. CLASSES

Get an LTS representing the composition between mental and system
Pre:-
Post: The returned value contains an LTS representing the composition between mental
and system.
public LTS<CompState<S>, TransitionImpl> getOrigComp();

Get the last computed composition
Pre:-
Post: The returned value contains the last computed composition.
public LTS<CompState<S>, TransitionImpl> getLastComp();

Check if system is fully controllable by mental and build the composition
Pre: mutant != null
Post: The returned value contains true if system is fully controllable by mental, false
otherwise.
public boolean isFullControl ();

Check if system is fully controllable by mutant and build the composition
Pre: mutant != null
Post: The returned value contains true if system is fully controllable by mutant, false
otherwise.
public boolean isFullControl (LTS<S, T> mutant);

Check if system is “alternatively fully controllable” by mutant and build the composition
Pre:-
Post: The returned value contains true if system is “alternatively fully controllable” by
mutant, false otherwise.
public boolean isAlternativeFullControl (LTS<S, T> mutant);

Fill a table of statistics with the errors with respect to full-control
Pre: mutant != null
Post: The returned value contains the entries of the table of statistics
public Set<StatTableEntry<S» statFullControl(LTS<S,T> mutant);

Fill a table of statistics with the errors wrt full-control but stop the traversal further a
mode confusing state.
Pre: mutant != null
Post: The returned value contains the entries of the table of statistics
public Set<StatTableEntry<S» statFullControlMode(LTS<S,T> mutant);

C.1.2 StatTableEntry<S extends StateAbstract>

Fields

private CompState<S> failState;
private Collection<LabelIF> missingCmds;

-76-

C.1. CLASSES

private Collection<LabelIF> extraCmds;
private Collection<LabelIF> missingObs;
private double percMisCmds;
private double percMisObs;

Constructor

Pre: failState != null
Post: An instance of this is created, representing an entry in a table of statistics with
specified related composite state.
public StatTableEntry(CompState<S> failState);

Pre: failState, missingCmds, extraCmds, missingObs != null
Post: An instance of this is created, representing an entry in a table of statistics with
specified related composite state, and the set of missing commands, extra commands,
missing observations.
public StatTableEntry(CompState<S> failState, Collection<LabelIF> missingCmds,
Collection<LabelIF> extraCmds, Collection<LabelIF> missingObs);

Methods

Get the percentage of missing commands
Pre:-
Post: The returned value contains the percentage of missing commands
public double getPercMisCmds();

Set the percentage of missing commands
Pre: percMisCmds != null
Post: percMisCmds is set to the specified value
public void setPercMisCmds(double percMisCmds);

Get the percentage of missing observations
Pre:-
Post: The returned value contains the percentage of missing observations public double
getPercMisObs();

Set the percentage of missing observations
Pre: percMisObs != null
Post: percMisObs is set to the specified value
public void setPercMisObs(double percMisObs);

Add a missing command.
Pre: toAdd != null
Post: toAdd has been added to the set of missing commands
public void addMissingCmd(LabelIF toAdd);

-77-

C.1. CLASSES

Add an extra command.
Pre: toAdd != null
Post: toAdd has been added to the set of extra commands
public void addExtraCmd(LabelIF toAdd);

Add a missing observation.
Pre: toAdd != null
Post: toAdd has been added to the set of missing observations
public void addMissingObs(LabelIF toAdd);

Override
public String int toString();

-78-

	Abstract
	Acknowledgments
	Table of contents
	Introduction
	Human-machine interactions
	Introduction of the concept
	Labelled transition system as modeling tool

	Mutation testing
	Introduction of the concept
	Specification mutation

	Methodology
	Process design
	Mutation operators
	Properties
	Full-control
	Alternative full-control
	Reachability

	Mental model generation
	A minimization-based approach
	A learning approach

	Architecture and implementation
	The lts package
	The mut package
	The checkProp package
	Usage

	Experiments
	Tests on the gearbox model
	The model
	Preliminary results

	Case study: the Therac-25
	Presentation of Therac-25
	Different mental models
	Results
	checkProp analysis

	Analysis
	About the mutants
	About the properties
	About the robustness

	Conclusion
	Bibliography
	Appendices
	API of the lts package
	Interfaces
	LabelIF
	StateIF
	TransitionIF

	Abstract classes
	StateAbstract
	TransitionAbstract

	Classes
	LabelImpl
	StateImpl
	CompState
	TransitionImpl
	LTS
	LTSLoader

	Inner classes of LTS
	InnerState
	InnerState

	API of the mut package
	Interface
	MutOpIf

	Abstract classes
	MutOpAbstract

	Classes
	COL
	Pair

	API of the checkProp package
	Classes
	Checker
	StatTableEntry

