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Abstract—This paper describes how to automatically detect po-
tential automation surprises in interactive systems, within a rapid
automation interface design tool named ADEPT. The proposed
analysis method in this paper is based on a conformance relation,
called full-control, between the model of the actual system and a
mental model of it, that is, its behavior as perceived by the opera-
tor. The method can, among other things, automatically generate a
so-called minimal full-control mental model for a given system. Sys-
tems are well designed if they can be described by relatively simple
mental models for their operators, which can be assessed with the
minimal full-control mental model generation algorithms. During
the generation, potential automation surprises are detected and
highlighted with execution examples that may lead to confusion.
The analysis methods are based on an enriched version of labeled
transition systems to describe the system and mental models. In
order to be able to integrate the analysis method within ADEPT, a
semantics for ADEPT models makes it possible to translate them
into enriched LTSs. The proposed translation is automated for
a specified class of ADEPT models that are characterized and de-
fined in this paper. A case study demonstrates the proposed analysis
framework and informs how the integration with ADEPT can be
improved.

Index Terms—ADEPT toolset, formal methods, human factors,
human–machine interaction.

I. INTRODUCTION

W ITH complex systems, accidents may in part be due
to automation surprise [1], [2] or mode confusion [3],

which is a particular type of automation surprise. In those situa-
tions, the operator is surprised during the interaction because the
system is not reacting as expected, that is, it is doing something
not foreseen by the operator.

Approaches using formal methods to tackle various problems
in human–machine interaction (HMI) have been developed, ex-
ploiting the rigorous and systematic analyses brought by formal
methods [4]–[7]. In order to be usable and adopted by system
designers, formal-method-based techniques must be supported
by tools. In addition to increase use, formal models manipu-
lated by system designers should be compatible with the way
they think about systems and interactions.
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This paper addresses integrating a given analysis method
based on formal methods with an existing tool used by system
designers. The considered method is used for the automatic de-
tection of potential automation surprises and is implemented as
a prototype command-line tool. The method is based on models
described with enriched labeled transition systems called HMI-
LTS [8]. The considered tool with which the formal-method-
based analysis is integrated is Automatic Design and Evaluation
Prototyping Toolset (ADEPT) [9].

The HMI-LTS models are conceptually far from the way
system designers think about systems. This paper introduces
a new formalism that extends HMI-LTSs to support a direct
mapping from ADEPT models. Models in the new formalism
can be expanded into HMI-LTSs, which enables the application
of all formal analysis techniques defined for HMI-LTSs. The
paper proposes a formal semantics for ADEPT models; this
semantics forms the basis for an automated translation from
ADEPT models into the new proposed formalism.

The remainder of this paper is structured as follows. Section II
presents the related work about applying formal methods to the
analysis of HMI, with a focus on techniques supported by tools.
Section III presents the analysis method on which the work
of this paper relies. Section IV describes the ADEPT tool and
proposes a formal semantics for ADEPT models, that is used
to support formal-method-based analysis. Section V presents an
enriched version of HMI-LTS that is used as an intermediary
step for the translation of ADEPT models. Section VI presents
a case study, and Section VII discusses the work.

II. RELATED WORK

Researchers have been working on the use of techniques and
algorithms based on formal methods in order to analyze various
aspects of HMI [4]–[7], [10].

Campos et al. [11], [12] propose a model-checking frame-
work for the analysis of HMI. They define a set of generic
parameterized usability properties in the computation tree logic
temporal logic. The Symbolic Model Verifier model checker is
used to check properties against systems modeled with the MAL
modal logic. Their analysis framework is supported by the IVY
tool [13]. The framework presented in this paper works with the
full-control property, which is more general than the usability
properties supported by their work.

Thimbleby et al. [14]–[16] use graphs to model the system
with a focus on user interface (UI). Their analyses focus on
structural properties and measures such as the maximum degree
or the value of centrality. In contrast with our work, there is little
focus on the dynamic aspects of interactions.
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Fig. 1. HMI-LTS model of a simple model of a microwave that shows the
current time (that can be changed) and that can cook food with two cooking
modes (1-min or specified duration cooking). Commands are depicted with solid
lines (−→), observations with dashed lines (− − −−>), and internal actions
with dotted lines (· · · · · · · · ·>).

Navarre et al. [17], [18] have developed a formal analysis
framework based on Petri nets and supported by the Petshop
tool [19]. Their focus is on the combination of user task models
and system models. The present work does not focus on user
task models, although the possibility has been explored in [20].

Bolton et al. [21]–[23] also consider user task models. More
precisely, they have developed a framework to analyze and pre-
dict the impact of human errors and system failures. Their anal-
ysis is based on task-analytic models and taxonomies of erro-
neous human behavior. In their work, models are merged with
the properties to be checked into a single model that is verified
with the SAL model checker.

Concerning automation surprises, and in particular mode con-
fusion, Rushby et al. [24], [25] and Bredereke and Lanke-
nau [26], [27] have worked on formalizing mode confusion
and have proposed techniques to reduce it. The former used
the Murφ model-checker, while the latter worked on specifica-
tion/implementation refinement relations.

The aforementioned research proposes formal frameworks
for the analysis of HMI and develops corresponding automated
tools, such as IVY and Petshop, for example. In our work, a
formal framework has been developed starting from the work
of Degani and Heymann [28]–[30]. However, whereas Shiffman
et al. [31] proposed a simple tool for those techniques, this work
focuses on usability. Instead of developing a new custom tool,
the approach proposed in this paper integrates the analysis tech-
niques of the proposed formal framework within an existing tool
developed for and used by system designers. System designers
are not accustomed to manipulating mathematical objects and
constructs used by formal methods, but are using models that
are supported by existing modeling tools. The main motivation
of this work is to bring the two worlds closer by making formal-
methods-based analysis available within the environments that
are familiar to system designers.

III. MODELING AND ANALYZING HUMAN–MACHINE

INTERACTION SYSTEMS

This section provides an overview of the formal framework
illustrated with a simple model of a microwave (see Fig. 1). The
door of the microwave can be opened or closed. When the door
is closed, the user can perform two kinds of tasks. The clock

Fig. 2. Classification of actions for HMI-LTS into three sets according to the
visibility and the controllability criteria.

of the microwave can be changed and set to a new value. The
microwave can also be programmed to cook, either during 1 min
with the 1-m cooking option or for a specified amount of time,
to be entered by the user.

A. Human–Machine Interaction Labeled Transition Systems

We model HMI systems with an enriched version of labeled
transition systems called HMI-LTSs [8]. An HMI-LTS is a di-
rected graph whose edges are labeled with actions. The dif-
ference with (classical) LTSs is that three kinds of actions are
considered.

1) Commands are actions executed by the operator on the
system; they correspond to inputs to the system.

2) Observations are actions autonomously triggered by the
system and observed by the operator; they correspond to
outputs produced by the system.

3) Internal actions are neither controlled nor observed by
the operator; they correspond to actions belonging to the
internal behavior of the system.

Fig. 2 shows the three types of actions. The first classification
level is related to whether or not the action is visible by the
operator. The second classification level is related to whether or
not the action is controlled by the operator.

Examples of commands include open that corresponds to
the opening of the microwave door and digit which is the action
of entering the cooking time. There is only one observation,
namely done. It corresponds to a signal that the microwave
emits when the cooking is done. There is only one internal
action that represents the fact that the microwave does not stay
in the Q0 state if the operator has not entered any number for a
certain period of time. An arrow without source state is used to
point to the initial state of the system, in this case, Q1 .

The distinction between commands and observations plays a
crucial role when studying HMI [30], [32]. While commands are
under the control of the operator, observations are autonomously
triggered by the machine. Any unexpected observation may
surprise the operator and lead to a future erroneous interaction
that could consequently lead to an accident.

Formally, an HMI-LTS is defined as a five-tuple 〈S,Lc ,Lo ,
s0 ,→〉, where S is the set of states, Lc and Lo are, respectively,
the sets of commands and observations, s0 ∈ S is the initial
state, and →⊆ S × (Lc ∪ Lo ∪ {τ}) × S is the transition re-
lation. Since internal actions cannot be distinguished by the
operator, they are all denoted with the same symbol τ . Finally,
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commands and observations are both visible to the operator, and
their set is denoted L = Lc ∪ Lo .

When a transition with the action α ∈ L exists between states
s and s′, which is denoted s

α−→ s′, the action α is said to be
enabled in state s. The set of commands (respectively, obser-
vations) that are enabled in a given state s is denoted Γc(s)
(respectively, Γo(s)). The intuition behind enabled commands
(respectively, observations) is that they can be directly executed
(respectively, observed) by the operator in the current state of
the system. This set is important for commands since it repre-
sents the commands that, when entered by the user on a system,
are accepted by the system.

Internal actions may take place between observable actions.
A weak transition between states s and s′ with the action α is
a sequence of transitions s

τ−→ ...
α−→ ...

τ−→ s′ that is denoted
s

α−→ s′. The set of commands (respectively, observations) that
are possible in a given state s is denoted Ac(s) (respectively,
Ao(s)) and correspond to the set of α ∈ Lc (respectively, Lo )
such that there exists a s′ such that s

α−→ s′. The intuition be-
hind possible commands (respectively, observations) is that they
may be executed (respectively, observed) after some interval that
cannot be predicted through observable behavior. Indeed, some
internal actions may be executed before a possible command (re-
spectively, observation) is accepted (respectively, is produced)
by the system. An action that is enabled is by definition also a
possible one, that is, Γc(s) ⊂ Ac(s) and Γo(s) ⊂ Ao(s).

The state Q0 in Fig. 1 has three enabled commands and six
possible commands. The enabled commands are open, ok, and
stop. The possible commands additionally include clock, digit,
and minute. Those three latter commands become enabled when
the system has transitioned to the Q1 state following the Q0

τ−→
Q1 internal action.

A trace σ = 〈α1 , ..., αn 〉 is a sequence of actions such that
there exists an execution s0

α1=⇒ s1 ...sn−1
αn=⇒ sn starting from

the initial state of the HMI-LTS. The set of traces of an HMI-LTS
M is denoted Tr(M). Intuitively, a trace represents a sequence
of actions that can be observed during an interaction between a
machine and its operator. Only the visible behavior is contained
in the trace since internal actions are hidden.

Finally, an HMI-LTS is said to be deterministic if and only if
for any state, there is at most one state that can be weakly reached
for every action. Consequently, deterministic HMI-LTSs do not
contain any τ -transition, and the execution of a given trace from
the initial state always leads to the same state, no matter what
path is taken. For example, the system model of Fig. 1 is not
deterministic since, starting from the initial state Q1 , after the
execution of the 〈clock〉 trace, the system can either be in state
Q0 or back in state Q1 if the Q0

τ−→S1 transition took place after

the Q1
clock−→ Q0 transition.

B. Full-Control Property

Systems and mental models are both modeled with HMI-
LTSs, but mental models are always considered deterministic in
this work. This hypothesis means that, whenever the operator
performs an action, he/she knows his/her next (mental) state. A
mental model for a given system captures a simplified view of the

Fig. 3. Four potentially surprising situations that may occur during the inter-
action between a humanH and a system S being used, in states of the interaction
model.

system, as perceived by the operator. The full-control property
relates a mental model with a system model. It captures the fact
that the mental model is complete enough to enable a complete
control of the system, avoiding automation surprises. The full-
control property requires that, at any time during the interaction,
the two following conditions hold.

1) The operator knows precisely what are the possible com-
mands on the system; the set of commands that are pos-
sible on the system must be exactly the same as the set of
commands that are possible in the mental model.

2) The operator is aware of at least all the observations that
could occur on the system; the set of observations that are
possible according to the mental model must contain all
the possible observations on the system.

Definition 1. Given S = 〈SS ,Lc ,Lo , s0S
,→S 〉 and H =

〈SH ,Lc ,Lo , s0H
,→H 〉, the mental modelH allows full-control

of the system model S, which is denoted HfcS, if and only if
∀σ ∈ L∗ such that s0S

σ=⇒ sS and s0H

σ−→ sH :

Ac(sS ) = Ac(sH ) and Ao(sS ) ⊆ Ao(sH ). (1)

Fig. 3 shows the four potentially surprising situations that may
arise during any interaction between an operator and a system.
During the interaction, the system is in a state SS according
to the system model, and the system is in the state SH for the
operator according to the mental model. In both states, there are
commands and observations that are possible. The full-control
property guarantees that three of those situations are avoided.

1) There is an observation o1 that can be produced by the
system but not foreseen by the operator. It can be dan-
gerous if the system is producing an unexpected hazard
signal.

2) There is a command c3 that is available on the system
but not present in the mental model. It is not precisely a
surprising situation, but it prevents the operator to use all
the functionalities of the system.

3) There is a command c4 that the operator can execute ac-
cording to his/her mental model but that is not possible
on the system. That can surprise the operator since he/she
will expect some feedback from the system that will never
happen.

The last situation, that is, an observation o2 present in the
mental model, but that will never occur according to the sys-
tem, is permitted by the full-control property. It is precisely the
second condition of the full-control property.
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Fig. 4. Model of the autopilot of the B777 loaded in the ADEPT tool. There are three parts in the main window: 1) the left pane is used to navigate through the
model, 2) the right pane shows a usable prototype of the UI, and 3) and the middle pane shows tables encoding the description of the behavioral aspects of the
model.

The full-control property guarantees that all the function-
alities offered by the system (the commands) are known by
the operator. This is a strong requirement since an operator is
not always interested in all the functionalities. A variant of the
full-control property where the first condition is replaced by
Ac(sS ) ⊇ Ac(sH ) can be considered. However, this work aims
at generating the minimal full-control mental model for a given
system. In such a setting, considering the proposed variant of
the full-control property would lead to a minimal mental model
that does not allow any commands.

Generally speaking, for a given system model, there is no
guarantee that there exists a full-control mental model. As de-
veloped in [33], the existence of a full-control mental model for
a given system model is only guaranteed if the system model
satisfies the fc-determinism property. That property states that,
for any trace, all the states that can be reached with that trace
starting from the initial state must have exactly the same set of
possible commands. If a system model is not fc-deterministic,
an execution trace can be found that may lead to a potential au-
tomation surprise. If such a situation appears, the system model
should be redesigned in such a way that a full-control mental
model exists for it.

C. Detection of Automation Surprises

A formal framework to analyze system models has been de-
veloped based on the full-control property [8]. The main analysis
proposed in the framework consists in the automatic genera-
tion of a minimal full-control mental model for a given system
model. Two algorithms to perform that generation are proposed
in [33] and [34]. The first one is based on a variant of a bisimula-

tion relation between the states of the system, allowing to merge
together those which exhibit a similar behavior for the operator.
The second one uses an active learning algorithm that itera-
tively builds mental model candidates until reaching a minimal
one allowing full-control of the system model. Each algorithm
has its strengths and weaknesses, and one or the other may work
better for different systems. In the remainder of the paper, “the
algorithm” refers to either of the two algorithms.

The algorithm, once run on a given system model, either
succeeds and produces a minimal full-control mental model, or
fails if the system is not controllable according to the full-control
property. More precisely, the algorithm builds an abstraction of
the system model that can be considered as a “perfect” mental
model for the system, in the sense of the full-control property.
If the algorithm fails, it highlights an error trace as an example
of a potential automation surprise.

This work only focuses on the analysis of a given system
model, even if the used formal framework proposes many other
analyses. The reason for this focus is the ADEPT toolset is used
by system designers to model systems and to check properties
on them.

IV. AUTOMATIC DESIGN AND EVALUATION

PROTOTYPING TOOLSET

ADEPT [9] is a Java-based tool developed at NASA Ames
Research Center that supports designers in the early prototyping
stages of interface design. ADEPT additionally offers a set of
basic analyses that can be applied to the model being developed.
Fig. 4 shows the main window of the tool where a model of the
autopilot of the B777 has been loaded. The models developed
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Fig. 5. ADEPT model of a simple counter system, whose value ranges be-
tween 0 and 9.

within ADEPT can be directly executed and simulated by the
designers, but can also be analyzed by systematic and rigorous
techniques.

A. Automatic Design and Evaluation Prototyping
Toolset Models

An ADEPT model consists of two elements: a set of logic
tables is coupled with an interactive UI. The logic tables are
used to describe the dynamic aspects of the system. Their role
is to describe how the state of the system evolves in reaction to
actions by the user and events coming from the environment or
internal to the system. The state of the system includes the state
of the UI. The UI is a set of components encoded as Java objects
representing graphical widgets, going from simple buttons to
more complex widgets such as the primary flight display used
in avionics and visible on Fig. 4. Finally, an ADEPT model also
contains other elements such as timers, system variables, and
functions, each of them related to a specific Java construction,
such as instance variables and methods, for example.

The logic tables refer to the elements of the UI and to the
other components of the ADEPT model via their Java instances
variables. The interactions are performed through calls to the
methods of those components, using the Java syntax. In par-
ticular, UI events can be seen as Boolean variables indicating
whether the event occurred. Those variables can then be used in
the logic tables.

B. Automatic Design and Evaluation Prototyping Toolset
Logic Tables

Fig. 5 shows an example of an ADEPT model representing
a simple counter system that counts from 0 to 9 in response to
successive presses on a button. It can also be reset to the value
0 with another button. The model is composed of a single logic
table.

Logic tables are 2-D tables structured with two parts: IN-
PUTS and OUTPUTS (identified by the dark gray rows). Each
of those parts is further structured into a two-level hierarchy of
elements and values. Values in the input part represent condi-
tions, whereas they correspond to statements in the output part.
In addition to that vertical organization, logic tables are also

Fig. 6. Representation of the behavior of the ADEPT model of Fig. 5.

Fig. 7. Behavior of an ADEPT model.

structured horizontally: the left-part contains the element-values
pairs and the right part consists of a sequence of columns.

Each block of the input and output parts is related to one
variable of the system (identified by the light gray rows) and
includes a sequence of possible values for the variable. A special
variable named ACTIONS represents the action performed by
the user. Each column on the right part of the table represents a
possible scenario of operation.

For example, the input part of the first scenario (column 0)
corresponds to the following condition: value < 9 ∧ACTIONS
= press. If that condition is satisfied in the current state of
the system, the corresponding output part is executed. For the
first scenario, the output corresponds to the following variable
assignment statement: value ← value + 1.

Fig. 6 shows a representation of the behavior of the ADEPT
model example of the simple counter. Values inside the boxes
correspond to the value variable and the ACTIONS are put on
the arrows linking the boxes. This representation is an LTS,
with additional information on the states, which motivates the
translation to HMI-LTS presented in this work.

C. Formal Semantics of Automatic Design and Evaluation
Prototyping Toolset

This section proposes a formal semantics for ADEPT models.
Such a semantics is necessary to perform formal-method-based
analysis of ADEPT models. We use the example of Fig. 5 to
illustrate different elements of the semantics.

An ADEPT model has two parts: the logic part is described
by the logic tables and the program part is defined by the UI
and other components. Fig. 7 summarizes the behavior of an
ADEPT model. The elements of the model are first initialized.
After initialization, the behavior consists of a loop alternating
between the logic and program parts as events are occurring.
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1) Logic Part: A row header is a sequence of switches,
which are used to associate an element with a sequence of val-
ues. Input and output headers are different, and a table header is
a pair consisting of one input header and one output header. The
simple counter ADEPT table has two input switches: (value,
(<9)) and (ACTIONS, (press, reset)) and one output switch:
(value, (= value + 1, = 0)).

Header = IHeader × OHeader

IHeader = ISwitch∗ OHeader = OSwitch∗

ISwitch = IElem × IV al∗ OSwitch = OElem × OV al∗.

The columns define elementary fragments of the dynamic
behavior and are referred to as situation-automation behavior
pairs in [35]. One column can be seen as one possible execution
scenario for the behavior of the system.

A row index is a pair y = (i, j) ∈ N ×N, denoted i.j that
represents the jth value of the ith element. For example, the row
index 2.1 represents the first value of the second element of the
INPUTS part; therefore, it corresponds to the press value of the
ACTIONS element

Index = N ×N.

An index set is a set Y ⊂ N ×N of row indices. An index set is
an index range if its first indices cover the range of consecutive
natural numbers 1, . . . , n and its second indices cover the range
a consecutive natural numbers 1, . . . , ni for each first index i.
Finally, the subset Y |i = {i.j ∈ Y } contains row indices whose
first index is i. For example, the set Y = {1.1, 2.1, 2.2} is an
index range that corresponds to the whole INPUTS part and
Y |2 = {2.1, 2.2}.

An (input or output) header H is a mapping from row indices
to (element, value) pairs. For a given H = (H1 , ...,Hn ), with
Hi = (Ei, (Vi,1 , ..., Vi,ni

)), H(i.j) = (Ei, Vi,j ) provided that
1 ≤ i ≤ n and 1 ≤ j ≤ ni . For example, for the OUTPUTS
part, H(1.2) = (value,= 0).

A column gives a binary value for every row of the logic table
that corresponds to a value. In the proposed semantics, columns
are defined as two sets CI and CO so that i.j ∈ CI if and only
if row i.j is marked in that column, and similarly for CO . Those
two sets are included in the domains of the input and output
headers of the logic table. For example, CI = {1.1, 2.1} is the
column corresponding to the scenario 0, for the INPUTS part

Col = 2Index × 2Index .

A logic table is a structure T = (HI ,HO ,CC), where HI ∈
IHeader is an input header, HO ∈ OHeader is an output
header, and CC ∈ Col∗ is a list of columns C = (CI ,CO )
where CI ⊆ dom (HI ) and CO ⊆ dom (HO )

Table = IHeader × OHeader × Col∗.

The logic table corresponding to the simple counter example of
Fig. 5 can be defined as (HI ,HO ,CC) with

1) HI = ((value, (< 0)), (ACTIONS, (press, reset)))
2) HO = ((value, (= value + 1, = 0)))
3) CC = (({1.1, 2.1} , {1.1}) , ({2.2} , {1.2})).

Finally, an ADEPT program M (the logic part of it) is a
collection of named logic tables (given a set of names Name),
such that all the names are different and with one distinguished
name top: M : Name → Table.

2) Program Part: The program part captures the behavior
related to the interaction of the user with the UI. All the el-
ements of the program parts result, directly or indirectly, into
the generation of executable Java code. Five different types of
entities are used to build an ADEPT model.

�v System variables correspond to Java variables. They are
used in input and output switches and can appear as elements
or as values.
�C UI components correspond to Java GUI widgets from
the UI. GUI events are used in input switches for the
ACTIONS element. GUI component attributes are used in
output switches as elements whose values can be changed.
Finally, arbitrary GUI components methods can be invoked
in output switches for the PRIMITIVES element.
�O Timers are used to schedule repetitive events. Timer
events can be used in input switches for the ACTIONS ele-
ment and timer methods can be invoked in output switches
for the PRIMITIVES element.
�F Functions correspond to Java methods which return a
value. They are used in output switches as values.
�L Logic tables appear in output switches for the LOGIC
element. Furthermore, each logic table has an associated
variable T .outputState that can appear in both input and
output switches as element.

Input switches define conditions that correspond to Java
Boolean expressions. They are derived from input element-value
pairs, that is, B = cond(EI , V I ):

cond : IElem × IV al �→ JavaExpr.

The cond function is defined differently according to the type
of the EI element, as described hereafter:

1) cond (�V var, expr) = var == expr
2) cond (�V var, str) = var str
3) cond (ACTIONS, �C component.event) = compo-

nent.event
4) cond (ACTIONS, �O timer.event) = timer.event
5) cond (�L table.outputState, value) = table.outputState ==

value
For example, the cond function applied to the (value, < 9)

input element-value pair results in the following Java Boolean
expression: value < 9.

Output switches define actions that correspond to Java state-
ments. They are derived from output element-values pairs, that
is, S = stmt(EO , V O ):

stmt : OElem × OV al �→ String.

The stmt function also depends on the type of the EO element
and is defined as follows:

1) stmt (LOGIC, table) = call (table)
2) stmt (PRIMITIVES, �O timer.method) = timer.method()
3) stmt (PRIMITIVES, statement) = statement
4) stmt (�V var, expr) = var = expr
5) stmt (�V var, �V var’) = var = var’
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6) stmt (�V var, �F fun) = var = fun()
7) stmt (�V var, str) = var str
8) stmt (�L table.outputState, value) = table.outputState =

value
9) stmt (�C component.field, value) = component.field =

value
For example, the stmt function applied to the (value, = value

+ 1) output element-value pair results in the following Java
statement: value = value + 1.

3) Execution Semantics: The state of an ADEPT model is
composed of two elements: the values of the system variables
and the individual states of the different components including
UI components and timers. Those two elements belongs to the
program part, which, therefore, defines the set of possible states
q ∈ Q of the ADEPT model.

For a logic table to be executable without ambiguity, it must
be well formed. If a logic table is well-formed, it is guaranteed
that there is exactly one column (at most one for ACTIONS)
that will be applied for any invocation of a table and that only
one condition is true for any input switch in any state.

The well-formed property can be formally defined given
the following definitions. Given an index set Y , the choices
over Y are defined as the set choices(Y ) = Y |1 × · · · × Y |n ,
where n = max{i|i.j ∈ Y }. Given an index set C (from an
input column) and an index range Y (from the input header),
the don’t care expansion of C with respect to Y is defined as
expand(C, Y ) = C ∪

⋃
{Y |i | C ∩ Y |i = ∅}.

Property 2. Two requirements have to be satisfied for a logic
table (HI ,HO ,CC) to be well-formed:

1) (R1) Let CC = (C1 , . . . , Cm ) and Ci = (CI
i , CO

i ). For
any choice C∗ ∈ choices( dom (HI )), there is exactly
one 1 ≤ i ≤ m such that C∗ ⊆ expand(CI

i , dom (HI )).
2) (R2) For any input switch (EI , (V I

1 , . . . , V I
k )), where

EI �= ACTIONS (respectively, EI = ACTIONS), for
any state q, there is a unique (respectively, at most one) i
such that 1 ≤ i ≤ k and eval(cond(EI , V I

i ), q) = T .
Intuitively, R2 ensures that only one condition is true for any

input switch in any state, and R1 ensures that any combination
of such conditions is covered in any table. Note that R1 can be
checked algorithmically, and such a check is available within
ADEPT. On the other hand, R2 is much harder to check since it
involves arbitrary Java code; it is even undecidable in general.
For example, for the (value, (< 9)) input switch of the logic
table of Fig. 5, R2 means that the Java expression value < 9
must be true for any state q. It is generally not possible to check
it algorithmically, the only way is to explore all the possible
states q and check the value of the condition.

It is possible to define the execution of an ADEPT model
using the eval and exec functions. The first function is used
to evaluate the value of a condition B in a state q and is de-
fined as eval(B, q) ∈ {T, F}. The second function, defined as
exec(S, q) ∈ Q, is used to compute the state in which the system
enters after execution of a statement S.

The proposed execution semantics provided in Fig. 8 defines
semantic mapping [[α]](q) denoting the semantics of the syntac-
tic construct α in a state q of the model, for different constructs

Fig. 8. Execution semantics of an ADEPT model M ∈ Model for a given
state q ∈ Q. The distinguished table M (top) is the entry point of the execution.

α. The result is a Boolean value for input constructs and a new
state for output constructs. The execution semantics uses a pro-
jection operator of headers on columns (HI ,HO )/C. Given a
header H = (H1 , ...,Hn ) and an index set Y ⊆ dom (H), the
projection of H on Y is defined as

H/Y = (H1/Y, ...,Hn/Y )

where, for each Hi = (Ei, (Vi,1 , ..., Vi,ni
)),

Hi/Y = (Ei, (Vi,j | i.j ∈ Y, 1 ≤ j ≤ ni))

The projection is extended to a column C = (CI ,CO ) as

(HI ,HO )/C =
(
HI , expand

(
CI ,HI

)
,HO /CO

)

and then to a list of columns CC = (C1 , ..., Cm ) as
(
HI ,HO

)
/CC =

((
HI ,HO

)
/C1 , ...,

(
HI ,HO

)
/Cm

)
.

The two requirements for well-formed logic tables ensure
that there is at most one i such that [[HI

i ]](q) for any projected
input column (HI

1 , ...,HI
ni

). Moreover, the second requirement
guarantees that there is at most one i such that [[EI ]](V I

i ), and
exactly one except if EI = ACTIONS.

V. STATE EVENT MODELS

HMI-LTS are event-based models, that is, they do not carry
any explicit information on their states, except information about
what are the possible actions for each state. ADEPT models
combine state with transition information. In particular, the state
of an ADEPT model consists of the values of a set of system
variables. Among those variables, there are some visible vari-
ables whose values can be observed by the operator through the
UI. The ADEPT logic tables describe how the system evolves
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from one state to another, reacting to an action of the operator,
while the observable state changes.

As in [36], a direct translation from ADEPT models to HMI-
LTSs proved challenging. In order to tackle this translation prob-
lem, HMI-LTSs have been extended to support information on
states in the style of Kripke structures [37].

First, HMI state valued system models (HVSs) enrich HMI-
LTSs with a set of state values and a mapping function associat-
ing every state of the model to one state value. Formally, an HVS
is a tuple 〈S,Lc ,Lo , s0 ,→,Lv ,O〉, where 〈S,Lc ,Lo , s0 ,→〉 is
an HMI-LTS, Lv is the set of state values, and O : S �→ Lv

is the state value mapping function. HVSs are used to model
systems and possess two different kinds of observations that
are interpreted differently according to an HMI point of view.
Observations of the system state are optional, whereas observa-
tions labeling transitions have to be observed for the interaction
to proceed. Note that an operator may miss an observation that
is on a transition.

Going back to the microwave example of Fig. 1, it can
be enriched with the addition of two state-variables mode
and opstate (operational state). The mode state-variable has
two possible values: operational (when the door is closed)
or disabled (when the door is opened). The opstate state-
variable has four different values: settime, idle, program, and
cook. Each state value corresponds to a valuation of the two
system variables. For example, the state Q1 has the state value
〈mode = operational, opstate = idle〉 and the stateQ7 has
the state value 〈mode = disabled, opstate = cook〉.

Second, HMI state valued mental models (HVMs) are en-
riched HMI-LTSs that also include state values and are used
to model mental models. State values are taken into account
with the addition of action guards to the model. The action
guards are put on the transitions, and for the transition to be
fired, the state value of the current state of the system must
conform with the action guard. Formally, an HVM is a tu-
ple 〈S,Lc ,Lo , s0 ,→,Lv 〉, where Lv is the set of state values,
→⊆ S × Lv × L× S and 〈S,Lv × Lc ,Lv × Lo , s0 ,→〉 is a
deterministic HMI-LTS without τ -transition.

Different kinds of models are used for the system and men-
tal models. More precisely, HVSs and HVMs differ regarding
how they handle observations on states. A system model should
expose to the operator the observable part of its current state,
even though the operator may not find it useful and, therefore,
may choose to ignore it. As a consequence, state values are
attached to states. In the mental model, the behavior of the op-
erator depends on the current state of the system, and therefore,
transitions must contain guards on the system state. Moreover,
in a given state, the mental model can have different transitions
with different action guards. Therefore, state values are attached
to the transitions.

The enriched models allow for even more compact mental
models. Depending on what state variables are visible, thus
changing the set of state values, the minimal full-control mental
models vary. Fig. 9 shows an example of a minimal full-control
mental model for the microwave system of Fig. 1 considering
that only the opstate system variable is visible, and removing
the τ transition from the system.

Fig. 9. Full-control mental model for the microwave oven example, consid-
ering only the opstate state-variable as visible.

A. Interaction Model and Full-Control Property

Given an HVS S and HVM H, respectively, representing a
system and a mental model, and given that they share the same
alphabet of action and state values, their interaction is an LTS
I = S ‖I H corresponding to the tuple 〈SI ,Lc ∪ Lo , s0I

,→I 〉
with SI ⊆ (SS × SH ), s0I

= (s0S
, s0H

), and →I is defined so
that:

1) (sS1 , sH1 )
α−→(sS2 , sH2 ) if and only if sS1

α−→ sS2 and

sH1

[v ]α−→ sH2 with v = O(sS1 );
2) (sS1 , sH1 )

τ−→(sS2 , sH2 ) if and only if sS1

τ−→ sS2 .
The intuition is that the operator can perform a visible ac-

tion (command or observation) if the state value of the system
agrees with the action guard that is present on the mental model.
The full-control property for enriched models is defined based
on this interaction model. The difference with the full-control
property for HMI-LTSs is that the set of possible commands
and observations have to be considered with the associated state
value.

Definition 3. Given a system model S = 〈SS ,Lc ,Lo , s0S
,

→S ,Lv ,O〉 and a mental model H = 〈SH ,Lc , Lo , s0H
,→H ,

Lv 〉, the mental modelH allows full-control of the system model
S, if and only if, for all reachable (sS , sH ) ∈ S ‖I H:

Ac(sS ) = Ac(sH ) and Ao(sS ) ⊆ Ao(sH ) (2)

and where Ac(s) = {(v, c) | ∃s
τ ∗
−→ s′

c−→ s′′ ∧ v = O(s′) ∧
c ∈ Lc} for HVSs and Ac(s) = {(v, c) | s

[v ]c−→ s′ ∧ c ∈ Lc} for
HVMs. The Ao(s) sets are defined similarly.

B. Expanded Models

HVSs and HVMs can be expanded into HMI-LTSs so that the
full-control property is preserved. Consequently, it is possible
to check the full-control property between HVSs and HVMs
using the algorithms developed for HMI-LTSs. The idea of the
expansion is to move the state value that is either on the state
for HVSs or on the transition for HVMs on a transition.

Fig. 10 illustrates the two mappings. The idea is similar for
enriched systems and mental models. One transition of the en-
riched model is translated in a sequence of two transitions, by
adding one intermediate state marked with the state value for
HVSs or with the action guard for HVMs. The first transition of
the translation corresponds to the observation of the state value
or action guard and the second transition has the action that is on
the original enriched transition. Note that the enriched system
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Fig. 10. Transition mapping from HVSs and HVMs enriched models to HMI-
LTS, for non-τ transitions. (a) Transition from the original system model (on the
left) induces two transitions in the expanded system model (on the right), where
v = O(s). (b) Transition from the HVM (on the left) induces two transitions in
the expanded HMI-LTS (on the right).

Fig. 11. Expansion of the mental model of Fig. 9.

model may contain τ -transitions; these transitions are simply
kept without any change in the expanded HMI-LTS.

Both expanded models can be defined formally.
Definition 4. The expansion of an HVS S = 〈SS ,Lc ,Lo ,

s0S
, [4] →S ,Lv ,O〉 is an HMI-LTS 〈SE ,Lc , Lo

E , s0S
, →E 〉,

denoted exp(S) and where Lo
E = Lo ∪Lv and:

1) SE = SS ∪ {sv | s ∈ SS , v = O(s) and Γ(s) �= ∅}
2) →E = {(s, τ, t) | (s, τ, t) ∈→S} ∪ {(s, v, sv ), (sv , α, t) |

(s, α, t) ∈→S and v = O(s)}.
Definition 5. The expansion of an HVM H = 〈SH ,Lc ,Lo ,

[4] s0H
,→H ,Lv 〉 is also an HMI-LTS exp(H) = 〈SE , [4] Lc ,

Lo
E , s0S

,→E 〉, where Lo
E = Lo ∪ Lv and

1) SE = SH ∪ {sv | s ∈ SH , (s, v, α, t) ∈→H };
2) →E = {(s, v, sv ), (sv , α, t) | (s, v, α, t) ∈→H }.
Fig. 11 shows the expansion of the mental model of Fig. 9.

The two states of the original mental model (Q0 and Q1) are
still present and eight additional states have been added (one for
each state value, for both states of the original model).

The following theorem, proven in [38], shows that it is pos-
sible to reduce the check of the full-control property for the
enriched models to the equivalent check on the expanded HMI-
LTS.

Theorem 1. Given an HVS S = 〈SS ,Lc ,Lo , s0S
,→S , Lv ,

O〉 and an HVM H = 〈SH ,Lc ,Lo , s0H
,→H ,Lv 〉:

Hfc S ⇐⇒ exp(H) fc exp(S). (3)

Fig. 12. ASF structure of ADEPT models, with its execution loop.

C. Automatic Design and Evaluation Prototyping Toolset
Model Translation

We have considered the translation of one specific class of
ADEPT models as not all elements of a complete ADEPT model
are relevant for the analyses proposed by the formal framework.
For example, aspects related to the GUI components are not
relevant. ADEPT models following the ASF structure (action-
system-feedback) have their logic tables split into three groups.

1) Action tables manage the interaction between the operator
and the system, through the components of the UI. The
inputs of the action tables come from the Java UI (actions
from the user on interface components or automatic events
triggered by timers). The outputs of the actions tables are
summarized in the outputState variable.

2) System tables correspond to the internal decision logic
of the system. The system tables take as input the
outputState variables of action tables and combine them
with the values of the system variables to update the state
of the system. The output of system tables is also summa-
rized in their outputState variables.

3) Feedback tables characterize what information is showed
to the operator. That information is rendered through dis-
play components on the UI. The feedback tables take as
input the outputState variables of the system tables.

Fig. 12 illustrates the ASF structure of ADEPT models and
shows the execution loop of such models, along with the infor-
mation that is shared between the different tables. An important
assumption about the execution of the ADEPT model is that
each loop through all the logic tables is supposed to be always
associated with exactly one event.

For the translation of an ADEPT model following the ASF
structure into an HVS, only the logic tables belonging to the
system table category are considered. It is exactly those tables
that contain the decision logic of the system; the two other
kinds of tables play an indirect role in the translation process.
The action tables are used to identify the alphabet of the HVS
and the feedback tables are used to define the visible system
variables that define the set of state values. An ADEPT model
following the ASF structure is translated into an HVS according
to the following rules.
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1) A state s ∈ S of the HVS corresponds to a unique assign-
ment of values to all the system variables of the ADEPT
model (including the outputState variables).

2) The set of commands Lc is the union of the domains of all
the outputState variables of the action tables, except the
distinguished “no action.” If that particular value is true
in all the tables of the model, the transition corresponds
to an internal τ -transition in the HVS.

3) The set of observations Lo is empty.
4) The initial state s0 ∈ S is based on the initial values of

the system variables, as configured in the ADEPT model.
5) The transition relation → is defined according to the for-

mal semantics proposed in this paper.
6) The set of state values Lv is defined by the product of

domains of visible system variables. The state value of
a particular state s ∈ S corresponds to the assignment of
values to the visible system variables.

VI. EVALUATION

The formal analysis of ADEPT models proposed in this work
has been applied to an autopilot model of a Boeing 777 aircraft.
The full autopilot ADEPT model is composed of 38 logic tables.
The model follows the ASF structure and has 12 action tables,
15 system tables, and nine feedback tables. The remaining tables
are not considered in this work because they represent user tasks,
an experimental feature of ADEPT. Three groups of tables can
be identified in the model, namely one for the lateral aspect,
one for the vertical aspect and one for airspeed. Tables of each
group can then be classified according to the ASF structure.
Action tables determine actions from UI events, system tables
update the state of the system according to the performed action,
and, finally, feedback tables reflect the state of the system to UI
elements. Our case study focuses on the system tables.

After cleaning the system tables, the considered model has a
total of 12 logic tables. There is also a total of 20 commands and
no observations. The commands correspond to the manipulation
of knobs, thumbwheels, buttons, and switches. There is a total
of 25 system variables, some with a finite domain and the others
being integer of floating point numbers.

The first lesson from our analysis of this reduced ADEPT
model is that the extension from simple HMI-LTSs to enriched
ones makes it possible for an automatic translation of ADEPT
models, which would have been very hard to perform reliably
by hand, given the size of the system. However, computing all
states of the enriched HMI-LTS does not scale with the full size
of such a large and complex model, in particular because the
domains of the numeric variables are too large.

In order to scale, abstraction or model reduction has to be per-
formed on the ADEPT model. Several options can be used alone,
or in combination. The first possible reduction is to only con-
sider a subset of the system tables, or to only take into account
a subset of the system variables. Another reduction consists of
limiting the domains of the system variables, by restricting the
values to a small range. Another typical technique in formal
methods is abstraction [37], which consists of replacing infinite
domains of the system variables with abstract domains. One

Fig. 13. Situation exhibiting the fc-determinism issue indicating a potential
mode confusion situation. States S′

2112 and S′
2616 both also have the following

commands, leading to the same blocks: lattgt, lattgt�, lattgt�, latHOLD,
airspd, airspd�, and airspd�.

subpart of the full autopilot model that has been analyzed after
model reduction, based on the first two presented approaches,
was an HVS with 7680 states and 66 242 transitions, among
which 57 545 are labeled with commands and 8697 are internal
τ -transitions. The obtained minimal mental model has 25 states
and 180 transitions. The time for model generation and analysis
was 4.5 s on a 2.2-GHz Intel iCore7 MacBook Pro, with 8-GB
RAM.

A. Analyzing Mode Confusion

Using the proposed formal framework, it is also possible
to analyze mode confusion, which is a particular case of au-
tomation surprise. ADEPT models implicitly contain informa-
tion about operating modes. In fact, the outputState system
variable can be used as a mode indicator. Experiments have
been performed with one of the system tables of the autopilot
model (namely the airspeedSystemTable table). This experi-
ment highlighted a potential mode confusion.

The considered subsystem has four different operating modes.
After translating the ADEPT table into an HMI-LTS and running
the minimal full-control mental model generation algorithm on
it, an error is produced indicating that the system model is
not fc-deterministic. Fig. 13 shows the part of the system model
exhibiting the fc-determinism issue. By analyzing the error trace
manually, it is possible to trace back the error in the ADEPT
logic table. The issue is that the state S′

2480 can lead, with
the same action airspd, to two states (S2112 and S′

2616) that
have different behaviors. From those two states, after having
observed o0 , the sets of possible commands are not the same.
In particular, from S′

2112 , the maintain command is possible
(representing the maintain mode) and from the S′

2616 state,
the maintain and hold commands are possible. Therefore, the
operator is faced with potential mode confusion.

VII. DISCUSSION

This paper addresses the integration of a formal framework
that can be used to automatically detect potential automa-
tion surprises into ADEPT, a tool used by system designers
to design automation interfaces. The formal framework uses
HMI-LTSs, a low-level formalism based on labeled transition
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systems, whereas the ADEPT tool uses a higher level, more
intuitive description of a target system. In order to be able to go
from ADEPT models to HMI-LTSs that are used by the formal
framework, this paper proposes a formal semantics for ADEPT
models and a systematic translation methodology for ADEPT
models with the so-called ASF structure.

The semantics and translation algorithms proposed in this
paper are only a first step toward effectively integrating our
techniques with ADEPT. While we have worked on translating
ADEPT models to HVSs, we still need to be able to directly re-
late the results of our analyses with the original ADEPT models.
In the future, we, therefore, plan on working on a better integra-
tion of our analysis tools with ADEPT, better visualization of
the analysis results, and on increasing scalability of our analysis
algorithms.

A fully automated translation of any ADEPT model following
the ASF structure is generally possible. However, in the current
version, some basic configuration information is still provided
manually after understanding the considered ADEPT model.
More precisely, the steps that are still manual are the extraction
of the alphabet of the HVS and the identification of the visible
system variables.

For very large ADEPT models, the size of the generated
HMI-LTS is expected to be too large for our approach. More-
over, for an ADEPT model with many state variables, some of
these with potentially large domains, the number of states of the
generated HMI-LTS and the time taken to execute the tables to
compute the transition relation will also dramatically increase.
This problem is even more amplified when considering system
variables of floating-point type. Typical state reduction tech-
niques such as slicing or abstraction could be used to deal with
this state-explosion problem. An alternative technique would be
compositional verification [37]. In this work, we reduced the
ADEPT model manually, but support for this task should be
provided.
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