A Generic And Flexible Analysis Framework to Categorise Social Support Networks

XXXIX SunBelt Conference - June 23 2019

Sébastien d'Oreye de Lantremange¹, Sébastien Combéfis¹, Hélène Garin², François Wyngaerden², Pablo Nicaise², Vincent Lorant²

¹CERDECAM - Research Department

²UCLouvain - IRSS

 \frown

Wallonie - Bruxelles

International.be

The Egonet Project

- Promoting social support network mapping with severe mentally ill patients in order to improve care coordination, patient involvement, and personalised care
- Development of a computerized tool & analysis tool

The Egonet Project

- Feedback and analysis help personalize care given to the patient
- Structural & Composition metrics

Ą	Housing and Social Support	ОК
В	Medical Support	 Clustered around one hospital
С	Relational Support	 Professional-dependent
D	Vocational Support	 Lack of resources

The need for a responsive tool

The tool needs to give quick and accurate feedback

- An efficient way of storing / retrieving data
- A quick way of computing required metrics on the graphs stored

The relational model

- > The traditional approach to storing data is the relational model
- Relational tables can be exported in .CSV format, which is convenient

The relational model

► The downside? *Reconstruction*

Alters						
<u>ID</u>	Name	Address	•••			
1	Alice	•••	•••			
2	Bob	•••	•••			
3	Charlie	•••	•••			
4	Dave	•••	•••			
5	Eve	•••	•••			

When joining two tables A and B, up to |A| x |B| entries are computed

The Graph Data Model

> The Graph Data Model represents data as a graph in the *mathematical* sense

Data consists of nodes connected by edges

- Graph-oriented data stores come with their querving la
- Graph-oriented data stores come with their querying language

Querying graph data

At the center of each network is a patient

Querying graph data

- At the center of each network is a patient
- Once that patient has been found...

Querying graph data

- At the center of each network is a patient
- Once that patient has been found...
- His/Her relatives can be found by following the ties

The need for a responsive tool

The tool needs to give quick and accurate feedback

- ► An efficient way of storing / retrieving data
- A quick way of computing required metrics on the graphs stored

Analysis & Performance

- There are two limiting factors to the speed at which feedback can be provided :
 - Computing time of the analyses required
 - No graph reconstruction + efficient algorithms
 - Size of data to transfer from the database to the server
 - Extract only the results, not the data

Analysis & Performance

We have implemented our tool with Neo4j, a graph-based database engine

Neo4j has a language dedicated to querying its data store

Source : neo4j.com

It can be used to compute metrics inside the database rather than in an external script

Taking advantage of the model's structure

An example metric : Betweenness centrality

name	centrality
"N3"	7.5
"N4"	1.5
"N6"	1.5
"N5"	0.5
"N1"	0.0
"N2"	0.0

CALL algo.betweenness.stream("Request
graph from the database")
YIELD nodeID, centrality
[...]

To summarize...

Graph Reconstruction

Graph querying

Metric querying

The need for a responsive tool

The tool needs to give quick and accurate feedback

- ► An efficient way of storing / retrieving data
- A quick way of computing required metrics on the graphs stored

Deployment

Deployment

- POST /api/input
- ► GET /api/network/
- ► GET /api/patients/

•••

- ► GET /api/metrics/all
- GET /api/metrics/<...>

Classification

The tool has been tested with a classification tool based on C.Bidart et. Al.

Classification

- R script with data reconstruction to validate results
- > Python API to classify the networks with database-computed indicators
- Speed difference is undeniable
 - However, more specific test conditions are required to estimate the real speedup factor

Conclusion

- ► A fast, responsive tool for different purposes
- Uses the graph data model
- Allows traditional graph reconstruction
- Modular tool, with easy addition of new routes

Thank you for your attention

Any questions?

s.doreye@ecam.be

innov^{iris}.brussels

0

Wallonie - Bruxelles

International.be