
����������
�������

Citation: Combéfis, S. Automated

Code Assessment for Education:

Review, Classification and

Perspectives. Software 2022, 1, 3–30.

https://doi.org/10.3390/

software1010002

Academic Editors: Paolino Di Felice

and Tommi Mikkonen

Received: 6 December 2021

Accepted: 25 January 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Automated Code Assessment for Education: Review,
Classification and Perspectives on Techniques and Tools

Sébastien Combéfis 1,2

1 Institut Technique Supérieur Cardinal Mercier (ITSCM), 1030 Schaerbeek, Belgium; sebastien@combefis.be
2 École Pratique des Hautes Études Commerciales (EPHEC), 1200 Woluwe-Saint-Lambert, Belgium

Abstract: Automatically assessing code for learning purposes is a challenging goal to achieve. On-site
courses and online ones developed for distance learning both require automated ways to grade
learners’ programs to be able to scale and manage a large public with a limited teaching staff. This
paper reviews recent automated code assessment systems. It proposes a systematic review of the
possible analyses they can perform with the associated techniques, the kinds of produced feedback
and the ways they are integrated in the learning process. It then discusses the key challenges for the
development of new automated code assessment systems and the interaction with human grading.
In conclusion, the paper draws several recommendations for new research directions and for possible
improvements for automatic code assessment.

Keywords: automated code assessment; code graders; code analysis techniques

1. Introduction

Nowadays, computer-science-related courses are delivered in many kinds of training.
In particular, programming courses are being taught to very large audiences, starting from
pupils in primary and secondary schools to young adults in higher education, including
people following lifelong learning programs. Instructors facing these rapidly growing
audiences and the associated massive amount of code produced by learners to grade are
struggling with human resource issues. This resulted in the development of semi or fully
automated tools to assist them for code assessment.

1.1. Motivations

The principal reason that triggered the development of automated code assessment
systems is that the number of people who are learning programming increases while the
size of teaching staff stays constant and small. Concrete development being necessary
to achieve computer programming skills, this for sure led to significant challenges for
instructors who need to evaluate codes produced by their learners.

Having support to automatically judge codes is important to save human resources
and to relieve instructors from some lengthy tasks such as grading. Marking learners’
programs constitutes a substantial source of workloads in computer science courses, and
providing them timely and relevant feedback is crucial. E-learning has also been taking
additional roles in the current models of education, in particular since the arrival of MOOCs
and more recently with the COVID-19 pandemic. These last two observations both increase
the need for powerful and efficient systems to automatically evaluate codes. They should
be the best ways to extract syntactic and semantic features of the correct program to be
able to produce relevant assessments that support learning. Judging for wrong programs is
also critical for these systems, allowing them to generate the best possible feedback to help
learners understand their faults and make progress.

Both the large number of learners and the fact that computer science and programming
has spread widely into society contribute to the crucial need for semi or fully automated
systems to assess codes in the most human way possible to support learning.

Software 2022, 1, 3–30. https://doi.org/10.3390/software1010002 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software1010002
https://doi.org/10.3390/software1010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0002-8987-9589
https://doi.org/10.3390/software1010002
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software1010002?type=check_update&version=2


Software 2022, 1 4

1.2. Research Questions

This paper presents a review of techniques and tools that can be used to automatically
assess codes for educational purposes. The presented review has been realised to answer
three main research questions:

• What kinds of automatic code assessments are feasible?
• To what extent can an automated code assessment tool generate results that are as

good as those obtained manually by a human grading process?
• What are the key challenges related to automatic code assessment?

The first question instructors willing to use automated code assessment techniques
may ask themselves is whether the grading they are currently manually performing can be
automatically carried out. Then, depending on whether they need summative or formative
evaluations, instructors may want to know what is the expected quality of the results
produced by these tools. Finally, researchers are interested in the key challenges related
to the development of novel techniques and tools. The three research questions aim at
providing answer elements to these highlighted concerns.

The proposed review also aims to encourage researchers to better collaborate. They
have indeed been designing tools for many years, often in isolation, while the features
needed by instructors are, for most of the developed systems, similar. Compared to existing
reviews, this paper proposes a systematic analysis which results in recommendations and
research perspectives towards more unified development and easier sharing possibilities
between systems.

1.3. Methodology

The proposed approach used to bring answer elements to the three raised research
questions is based on an extensive literature review from papers found following several
strategies. The primary sources are Google Scholar and various widespread publishers
including ACM, IEEE, Springer and MDPI. The main keywords used in their online search
engines are “automated code assessment”, “automatic code grader”, “automatic program-
ming assessment” and “automated assessment computer education.” Relevant references
of the found papers have also been examined and included in the collection.

From this, only those written in English and published from the year 2000 have been
kept for the work presented in this paper, no matter their type and whether they have
been peer-reviewed or not. In addition, the focus being put on code assessment techniques
and tools that can or may be used for educational purposes, only relevant references have
been kept. For example, papers focused on algorithms, techniques or tools to analyse code
but not directly related to automatic code assessment for educational purposes have been
put aside. Selected papers have then been categorised based on their abstracts into three
categories: review or survey, tool presentation and others.

1.4. Related Work

To obtain a holistic overview of research works related to automated code assessment
in education, review and survey papers have first been analysed. Eighteen references,
published between 2005 and 2021 and covering several aspects of techniques and tools to
automatically assess codes, have been identified [1–18]. The review of these papers made
it possible to highlight six main concerns related to the development of automated code
assessment systems:

1. the kinds of coding/program aspects that should be assessed;
2. the methods and techniques used to analyse the code;
3. the types of feedback that are presented to learners and instructors;
4. the kinds of systems developed to support the automated code assessment;
5. the ways they are integrated in the learning process and used in education;
6. the quality and impact of the automatically produced assessments.



Software 2022, 1 5

For computer science and software engineering related courses, problems and assign-
ments are usually essential educational elements. Assessing these assignments is crucial in
the learning process. All the examined reviews agree that assessment related activities place
a high demand on instructors’ time and resources. The development of automated ways to
assist instructors for these assessments started in 1960, with the main goal of reducing the
burden on them while still helping learners make progress [19].

Automatically assessing codes means being able to identify defects that are non-
desirable and decrease their quality. The examined reviews and survey papers show that
three kinds of error are of interest, namely, syntax, runtime and logic errors [2,5,7]. They
have to be targeted by the assessments as they are aligned with the kinds of defects that
good programmers should avoid. In addition to code correctness, several reviews highlight
the difference between functional and non-functional aspects [12]. Some systems do check
style aspects [2,7,14], code quality with metrics [2,3,7,8], efficiency [2,8] and GUI testing [14].
Another difficulty is plagiarism, which can be tackled with similarity analyses [7,11]. The
majority of the reviews are focused on programming and not on other computer-science-
related skills. A few of them nonetheless mention techniques to assess learners’ testing
skills [2,8,14].

Regarding the methods and techniques used for automated code assessment, two
kinds of analyses are predominant in the examined review and survey papers, namely,
static and dynamic ones [2,3,6–8,15,18]. More advanced methods are based on those
used in software engineering, in particular, in the software testing [5,9] and software
quality fields [5]. When working with test-based assessments, having good test data is
important [11], in particular if they are automatically generated [10]. The level on which the
analyses are performed is also important to determine. For example, they can be achieved
on the source code or bytecode, and on a tree or graph representation of the code [13].
Finally, another set of techniques used relies on the presence of a reference correct answer
for the assignments to be worked on by learners [5].

A key feature of automatic assessment tools when used for education is the extraction
of a measure comparing submitted programs to a solution with respect to the teaching
goals [2]. To explain this measure to both learners and instructors, feedback resulting from
the assessments is critical. Having systems capable of producing good feedback, especially
formative ones, is a key element for being able to use them in educational settings [11].
More specifically, good feedback should explain to learners how to fix the remaining
problems and take a next step for their assignments [16]. Developed systems should be
opportunities to improve the level of feedback provided to learners [12]. Being able to
automate feedback generation helps to make the learning process better, as feedback acts as
a constant motivator [18]. Finally, in some settings, instant feedback is needed for learners
to immediately know the mistakes they made to improve themselves and not repeat the
errors again [7,8].

Several reviews are focused on the tools developed to support automatic assessment
of code [6,12,18]. They mainly highlight the big number of diverse possible features to
have on one side and the difficulty to develop them on the other side. The most frequently
mentioned features include support for assessment, evaluation, grading and for the man-
agement of programming exercises [2,7]. Three main generations of tools are discussed
in [1]: early systems focused on simple analyses with short reports based on graders,
tool-oriented ones built on test engines and other tools such as style checkers and, finally,
web-oriented tools. Developing such platforms requires taking into account numerous
concrete aspects such as architecture choices, programming languages, technologies used,
etc. [12]. The kind of tool is also important, generally being a library, a standalone software
or a plugin to easily integrate within learning management systems [9,13,17]. Finally, the
security of these platforms must be a key concern, and programs should be executed in
safe sandboxes, as malicious code can be submitted by learners [9,11].

All the reviews raise the dramatic increase in the number of students enrolled in
traditional and distance learning environments and who are being taught programming,



Software 2022, 1 6

resulting in the need of automatic assessments tools to assist instructors [3,12,18]. Regarding
the specific use in education, such systems can be seen as learning engines improving
learners’ motivation, progression, self-assessment abilities and computer-science-related
skills. The purpose of these platforms is to try to measure whether instructors’ learning
goals have been met [9]. They can either be centred on instructors who have to produce
grades or on learners needing to practice and improve their skills [17,18]. Automated code
assessment tools can both be used for formative or summative assessments in a fully or
semi-automatic setting or even a manual one [5,9,17,18]. In the case of formative assessment,
such platforms are an opportunity to give intensive sets of exercises for learners to train [7]
and to move to continuous evaluation for a course [9]. In both cases, the resubmission
policy is a subject of discussion, with propositions for unlimited submissions for formative
assessments [9,11]. They can be used with different kinds of pedagogical approaches, such
as with distance education or MOOCs [11,14] or based on competencies [3]. Finally, as this
is the case without automated code assessment platforms, having high-quality assignments
remains crucial [14].

Finally, very little research and analysis have been specifically conducted on the quality
of the produced assessments. However, the examined reviews all agree on the fact that the
assessment and the associated feedback must support the learning process.

The six main categories identified from the examined review and survey papers
structure the remainder of this paper. Sections 2–4 are about the six concerns and detail
results described in more specific research papers covering them. Then, Section 5 discusses
how the review presented in this paper provides answer elements to the three raised
research questions. It also provides some advice to guide future research and development
in this field. Finally, the last section concludes the paper and identifies perspectives and
possible future work.

2. Automated Code Assessment

Assessing a code for education generally means to review it to be able to either assign
a mark to it which reflects evaluation criteria or to produce feedback to learners to support
their learning. These aspects are not incompatible, as good assessments typically combine
both of them, with feedback explaining the mark. A (fully) automated code assessment
is one being completely computer-controlled, while a semi-automated assessment is only
partially computer-assisted and requires human intervention.

2.1. Code and Program Aspects

Automated code assessment techniques can be used to assess several aspects of a code
or a program. Five levels that are mentioned in the literature survey conducted for the
work presented in this paper can be considered.

A first aspect to examine is whether programs compile or not. To be more general,
the goal is to ensure that a code is syntactically correct. A second level of verification that
is sometimes conducted is related to plagiarism. The goal is to be sure that the submitted
codes are authentic and have not been copied. A third aspect, a large part of the existing
research being focused on it, is code functional correctness. The objective is to verify that
the results produced by the execution of assessed codes agree with the expected solution
described by any kind of specifications. A fourth level consists of assessing code performance
aspects, such as the execution time or the memory consumption. Finally, the last level is
related to code quality aspects, including style considerations.

The different checked aspects are usually examined following the order of the five
levels, since each of them relies on the fact that the one below succeeded, as summarised
by Figure 1. The order in which the two first layers are considered may be switched if
anti-plagiarism is to be used first to quickly eliminate codes that must not be assessed. The
second and fourth layers are often not present in simpler assessment systems.



Software 2022, 1 7

Code syntax

Anti-plagiarism

Code semantic

Code performance

Code quality

Figure 1. Five levels of aspects to check can generally be made on a code submission by automated
code assessments tools, following the sequence presented in this figure, starting from the bottom.

2.1.1. Code Syntax

Just checking that a code submission is syntactically correct is a straightforward task,
as it can be performed by compilers. Instructors may want to be able to enforce additional
constraints to the syntactic rules of the programming languages. In [20], the authors propose
to use regular expressions to analyse the correct use of syntactic constructs, such as using
semicolons and not commas in Java for loops. In [21], the authors propose another kind
of syntactic check, referred to as a keyword search, which verifies the existence or absence
of specified words. This latter approach can be generalised to ensure that only authorised
statements or constructs are used. Such additional checks make it possible to have two
levels of syntactic correctness. A code can be correct according to the programming
language specifications and also in accordance with additional constraints. Using both
kinds of checks may be relevant depending on the context.

2.1.2. Anti-Plagiarism

An anti-plagiarism feature is used to ensure that codes submitted by learners are
not the same or similar to other submissions [22–24]. Different kinds of sources can be
examined to identify whether submissions have not been copied. Submitted codes may
have been copied locally from other learners in the same learning group or from another
one in the current edition of a course or from a previous year. In [25], the authors propose to
compare codes with the history of submissions and to send incident reports to instructors
in case of a match. Codes publicly available on the Internet can also been considered.
In [26], the authors propose to perform a search on Google for lines or paragraphs and
then compute a similarity index between the found codes and the submitted one. More
recent techniques are not directly focused on the code but rather try to identify authorship
to detect probable plagiarism [27] or to identify similar code style [28].

The plagiarism detection feature is important given the existing research evidence
that academic dishonesty does exist, which is also true among computing students [22].
However, it is not easy to precisely define what source code plagiarism is [29]. Detecting
it may be difficult, in particular for assignments for which answers are simple and short
codes. They are, indeed, often similar, since there are not always many different ways to
answer a simple assignment. Finally, a last difficulty arises when learners are taking code
made available under a licence that allows them to use it. In this case, instructors must
check the code has been used in accordance with the licence conditions [30].

Another feature related to plagiarism is code deobfuscation. Fraudulent learners that
want to try bypassing anti-plagiarism checks are indeed usually obfuscating their codes to
evade detection [31].

2.1.3. Code Semantic

Checks related to the semantic of code submissions usually require executing, sim-
ulating or modelling their execution. The goal is to measure how well the submitted
code does what it is meant to do. In [32], the authors propose a system to automatically
assess that some functionalities have been correctly implemented as an Android mobile



Software 2022, 1 8

application. In [33], submitted codes are run against tests to check whether they conform
to the requirements defined by instructors. Meeting the requirements generally means
successfully passing a set of tests checking for functional validity. The expected result of
a code also includes specific behaviours such as entering an infinite loop, throwing an
exception or producing a specified side effect.

Other approaches aim at assessing programs that produce, as a result, an interactive
and visual output from code, such as a graphical user interface [34,35] or data visualisation
such as charts [36]. The visual rendering of the result has to be checked according to the
expected one. If any interactions should be possible on the produced result, they also have
to be checked. Finally, the execution of submitted codes is sometimes not necessary to
check for code semantic aspects. In [37], the code of programs written in assembly language
is analysed to check whether the produced output are stored in a memory area with the
correct type required by instructors.

2.1.4. Code Performance

When writing code, another aspect that is worth evaluating is the performances,
should it be the time needed for the run or the memory used during its execution. Mea-
suring time and memory consumption is very usual for automatic code graders used for
programming competitions but less present for educational usage. In [38,39], the authors
are monitoring the execution time and memory consumption to check that constraints
specified by instructors are satisfied. In [40], the authors measure the loading and running
times of JavaScript programs to take these measures into account for the assessment.

2.1.5. Code Quality

Code quality includes many kinds of aspects that can be checked, such as code style,
readability, maintainability, complexity, etc. Despite serious problems that may arise in
software systems due to low quality programs [41] and its importance in industry, code
quality is generally overlooked in first-years programming courses [42]. The focus is indeed
too often only on functional correctness. Having automated techniques to assess code
quality related aspects may help to make students aware of them early on if the produced
feedback explains the results of the assessments [43].

In [42], the authors propose an automated system to check whether Java programs
violate any coding conventions from a given set. This can be used to ensure that the readability
of learners’ codes is as high as possible, increasing their maintainability. In [44], the
authors are moving beyond mechanical coding convention checks and propose to assess
the effective use of programming idioms. In [40], the authors are assessing several code
quality related aspects of JavaScript programs such as the style, programming errors and
complexity with metrics using industrial tools. In [45], the authors also rely on industrial
tools to analyse the style of C, Java and PHP programs. In [46], C++ programs are assessed
with respect to a set of coding rules to encourage learners to produce high quality codes.
For this purpose, a common C++ programming style guide has been created for instructors
and learners. In [47], the robustness and security of web-based applications are assessed
with tests on input validation and on data persistence against crashes. In [48], the authors
propose to assess the robustness of a web page, that is, whether its layout resists to the
addition of new content.

2.1.6. Other Aspects

Automatic assessment is not always directly related to the code but can be conducted
on other artefacts. In [49], the authors aim at automatically assessing mobile applications
created with App Inventor, focusing on their visual design. In [50], the author develops a
semi-automated assessment approach to measure whether learners understand how to
design and implement a database schema in SQL. In this latter work, the focus is not on SQL
programming but on the ability to conceive and implement a schema from a description
given in natural language. In [51,52], the authors present a tool to automatically analyse



Software 2022, 1 9

Scratch or Snap! projects. The focus is not on the submitted programs, but on whether the
projects realised by learners contribute to develop their computational thinking skills. Another
example, presented in [53,54], is the evaluation of OpenGL assignments, for which the goal
is to check whether the submitted programs build the correct 3D scene. A last example is
the integration of an automated code assessment feature in visualisation and simulation
tools that are typically used for data structure and algorithm-related assignments [55,56].

Several systems have been developed not to directly assess a code but to measure how
well learners cover them with tests. In [57], the authors propose to assess if test coverage is
good with respect to test cases defined by learners. In [58], the author insists that test-driven
development is important and proposes to use automatically graded test-first assignments
to improve student performances. In [59], the platform proposed by the authors checks
whether learners have written test cases to cover all the requirements of the assignments.

Assessed aspects can also be specific to a given programming paradigm, such as
object-oriented programming [60,61]. In [60], the authors develop a violation manager
component for Eclipse to assess whether a Java program contains possible violations of
an object-oriented paradigm. In [62], the authors develop a system to provide feedback
on flaws in Java programs for not novice programmers, such as the misuse of a visibility
modifier or fields that should have been local variables, for example. Another aspect
that is not directly related to code and that can be assessed is the understanding of query
languages to work with databases [63,64].

Finally, automated assessment systems can also be used to grade computer-science-
related artefacts that can be represented with code. In [65,66], the authors propose to
automatically grade Entity-Relation diagrams, either from a raster-based image or from
an XML representation of the diagrams. In [49], the visual design of mobile applications
is assessed based on its App Inventor source code, which is a structured file. In [67],
flowcharts can be assessed thanks to a conversion into BASIC programs that can undergo a
set of tests.

2.2. Methods and Techniques

Techniques used to automatically assess codes can generally be classified in two main
categories. On one side, static approaches are using algorithms developed for compilers
and for language-based tools to analyse the text of the source codes without executing
them [13]. These approaches include semantic similarity and graph-based techniques. On
the other side, dynamic approaches analyse the output results after possibly compiling
and then running the code with a set of predefined tests [1]. These approaches include
test-based techniques, with tests generally either run following a black-box or a white-box
approach. Finally, hybrid approaches combine both static and dynamic techniques [68,69].

2.2.1. Static Approaches

Static approaches are based on any tool or algorithm that can analyse a source code,
starting with compilers and interpreters. Other existing tools that can be used include
static source code analysers (CheckStyle, PMD, etc.) and model checkers (Java PathFinder,
ESC/Java, etc.). Analysis techniques using a static approach are generally used to assess
code syntax, anti-plagiarism and code quality aspects. Three main categories of static
analysers’ features can be identified: detecting fault or errors, checking the format and
measuring properties [45]. In [26], the authors propose to use static analysis to identify
whether concepts specified by instructors are present in learners’ submissions. Their
analysis is based on key abstractions and keyword extraction from submitted codes. In [20],
regular expressions are used to check for specific syntactic errors learners are commonly
doing. In [62], the abstract syntax tree is used to perform data flow analyses to identify
flaws in Java programs.

It is also possible to compute several kinds of metrics from source codes. Such
measures are generally used to assess code quality aspects [70] but are also used to detect
plagiarism when computed on pairs of codes. In [71], two metrics are used to assess



Software 2022, 1 10

the structural complexity of submitted codes. In [46], the metrics to consider can be
selected from a list of available ones, and measurement value limits along with weight
can be configured by instructors. In [72], the authors are computing metrics on graph
representations of source codes to assess structural aspects and compare codes. In [73],
the authors are building dependence graphs of submitted codes and comparing them to a
model program to take into account that several solutions are possible for a given problem
specification. In [44], the authors are using a similarity metric on submissions to build a
chain of codes, each one having an additional specific language concept or idiom. This data
structure is built from a big corpus of submissions and used to provide actionable style
hints to learners. In [65], similarity between submissions and the instructor’s solution is
measured thanks to the computation of edit distances between them.

2.2.2. Dynamic Approaches

Dynamic approaches gather techniques requiring the execution of the code. They are
usually based on an analysis of the output produced by the code execution, comparing
them with those of a reference solution. In this case, they are usually referred to as unit
testing approaches and are used to assess code semantic aspects. Industrial tools such as
JUnit for Java programs [33,61,74] are usually used for such approaches. As highlighted
in [75], working with test cases requires instructors to define limiting or abnormal cases to
train students to produce bullet-proof software. In [76], the author develops a framework
and systematic approach to design tests that can be used for automated assessment, mainly
focusing on precise specifications with a well-defined perimeter on what to test and how
to test it. The analyses can be performed on string representations of the output results,
making them programming language-agnostic. However, to obtain more precise and
detailed assessments, the analyses of the output results must be directly performed on
the domain values. Some systems support both kinds of analyses of the output results.
In [77,78], the authors use a dynamic unit testing-based approach that can both compare
string representations or domain values of output results. The second kind of analysis is
only available for a few programming languages because libraries have not been written
for many of them for yet.

In addition to just comparing the produced and expected outputs, using a string or
exact value comparison, some approaches perform additional analyses on the produced
output. In [79], the authors propose to perform a semantic-similarity analysis on the output
results. This approach makes it possible to compare the meaning of the produced output
with the expected output. It also opens the possibility for partial grading since it makes
it possible to distinguish a nearly correct answer. For example, the submitted code does
produce the correct values in an array, but they are not sorted in the expected order. In [80],
a simpler approach based on regular expressions is used to identify the output that have to
be considered as correct. Other test-based approaches are also possible. In [71], the authors
are using property-based black-box testing to develop test models against which submitted
codes are run. From the obtained results, their system ranks the submissions according to
the amount of contained bugs and infers the algorithmic complexity.

Dynamic approaches can also benefit from features that are specific to the program-
ming language. In [80], specific features of object-oriented programming languages are
used to build more a genuine tester. Reflection and inheritance are indeed used to better
analyse learners’ individual submissions without imposing too many constraints on their
code. In [61], Java interfaces are used to define a common API that all submitted codes
must respect, making the use of reflection for the assessment system easier. In [34], the
author proposes a technique to assess the design of GUI in Java by using a custom library
that exists in two versions: one that can be used to build user interface and one that is a
mock used for the assessment.

Finally, dynamic approaches can also be used to assess real code performance aspects
in a controlled execution environment. These kinds of analyses are heavily used in auto-
mated code assessment systems used for contests. When used for education, performances



Software 2022, 1 11

measures are generally used to enforce time or memory constraints for the assignments
and for security reasons.

2.2.3. Hybrid Approaches

Hybrid approaches combine both static and dynamic analyses to produce a code
assessment on one given aspect. Such approaches are usually considered when assessing
programs that are producing code as output. In [36], the execution of submitted codes
produces SVG charts that are then analysed with a static approach to extract the information
needed to assess the submission. In [81], the authors propose to assess web applications
by checking that the produced web applications contain the expected component. For
that, the code of the generated HTML pages is examined using static analyses. Hybrid
approaches combining static and dynamic analyses are also used to make it possible for
code submissions containing syntactic errors or not producing any input to be graded with
anything but a zero mark [73]. This is very important in the particular case of courses
targeted to novice programmers.

Another possible issue with automated code assessment systems is that a non-compiling
program is usually associated with a zero mark since it is not possible to run tests against
a code that cannot be compiled. To tackle this problem, hybrid approaches first trying to
repair the program with algorithms based on static analysis techniques before running
tests are being developed [82,83]. Using such approaches makes it possible to build an
assessment resulting in a partial grading.

2.2.4. Modelling

Other approaches are not performing analyses directly on submitted codes but on
models representing them. In [84], the authors propose to use symbolic execution to
detect possible path differences between submitted codes and a reference implementation
solution. This makes it possible to assess whether submitted codes implement all the same
behaviours as the reference one.

2.2.5. Artificial Intelligence

Artificial intelligence is also being used to automatically assess different aspects of
computer programs. In [85,86], machine learning techniques are used to grade programs
based on a grammar of features capturing signature elements that human experts are look-
ing at when assessing a code. In [65], machine learning is also used but to assess whether
ER diagrams are close to the expected solution. In [48], the authors use a convolutional
neural network to measure the robustness of a web page, comparing screenshots of the page
before and after the addition of new content. The result produced by the neural network
is combined with other metrics to obtain a single robustness score. In [87], clustering is
used to automate style grading by identifying common mistakes. The authors make the
hypothesis that there might only be a limited number of ways to solve a problem.

Table 1 summarises the main methods and techniques reviewed in this section, organ-
ised by categories and related to the code aspect they are used to assess. Code performance
is not in the table since no specific techniques to assess this aspect have been found.



Software 2022, 1 12

Table 1. Different methods and techniques can be used by automated code assessment systems to assess four of the five identified code and program aspects.

Method/Technique Code Syntax Anti-Plagiarism Code Semantic Code Quality

Static approach • AST analysis [40,62]
• Keyword search [21,37]
• Regular expression [20]
• Dependence graph similarity [73]

• AST comparison [21] • Data type checking [37]
• Edit distance [65]

• AST analysis [21,40,42,62]
• Metrics [40,45,57]
• Edit distance [44]

Dynamic approach • Test-based [21,35,38,47,75,76,88,89]
• Unit-testing [33,40,61]
• Object-oriented programming

features [80]
• Mock testing [34]
• Semantic similarity [79]
• Property-based testing [71]

• Interaction test [47]

Hybrid approach • Test-based and element
extraction [36,81]

Modelling • Symbolic execution [84]

Artificial Intelligence • Machine learning [65,85] • Machine learning [85]
• Neural network [48]
• Clustering [87]



Software 2022, 1 13

2.3. Feedback

Automated code assessment systems are not only used to support instructors for grad-
ing duties but also to accompany learners. Giving learners feedback is an effective way to
promote learning [90], especially in the case of formative ones [91]. The quality of feedback
produced by the automatic assessment process is therefore crucial. Feedback is indeed
important when learning programming, in particular with educational games, as they
provide information about the learning process to both the instructors and learners [92].

A challenge with automatically generated feedback is that they can feel mechanical
and inauthentic. This can result in mindless repetitive attempts from learners to sec-
ond guess the mechanism, which interfere with an efficient learning process. Generally,
feedback consists of marks used for summative assessment and textual comments for
formative assessment.

2.3.1. Status

The simplest feedback for an assessment is a pass-or-fail status. Such a very limited
feedback is, of course, not so useful in an educational context. Instead of only two different
possible statuses, automated code assessment systems usually have more of them. In [38],
the authors propose to associate one of four status to each test case: “accepted” for a
successful test, “format error” if the produced output is correct but not well-formatted,
“wrong answer” if the produced output is incorrect and “time limit exceeded” if the
submitted code did not finish its execution within the time limit defined by instructors.
In [37], five different values can be produced as a feedback, depending on the results of the
assessment of a program written in assembly language. The submission can fail to compile,
can take too much time to execute, can produce wrong results for some tests, can miss some
quality requirements or finally can be “perfect”. In [33], four statuses corresponding to
the level of achievement are used: “excellent”, “good”, “satisfactory” and “poor”. In [65],
five statuses are used to characterise the closeness to the expected solution of submitted
ER diagrams.

2.3.2. Mark

Since automated code assessment systems are usually used for summative assessment,
it is important for instructors to be able to obtain a mark for each submission. In [26],
a grade for a submitted code is produced by summing up all the individual obtained
grades resulting from the presence of key abstraction or keywords specified by instructors,
resulting in one overall score. For test-based approaches, the mark can be as simple as the
number of tests that succeeded over the total number of tests [80].

In [93], the authors define a feedback unit as the response awarded to learners to help
them measure their progress towards achieving a “successful” program. The generated
response are grades that can have a coarser or finer granularity, associated with textual
feedback identifying tests that passed and, when possible, possible places to look at in
the submitted codes for improvement. Learners tend to perform differently depending
on the granularity used for the marks and associated feedback. Proposing more detailed
marks encourages learners to make progress and be active. In addition, for such marks to
be of interest and useful for learners, fine-grained tests should be used [94]. In [95], points
are also awarded for each successful test, but penalties are then removed, for example,
if the thrown exception choice was wrong. In [58], two scores are produced to measure
how well a code has been tested. A validity score measures the accuracy of the tests and a
completeness score measures the test coverage.

Marks produced by an automated code assessment platform can result from the
combination of several marks, each of them assessing a specific aspect [71,72,83,96]. Weights
are often used to indicate the importance of each assessed aspect. In these situations, the
detailed scoring scheme is usually communicated to learners before the assessment.



Software 2022, 1 14

2.3.3. Rubric

Using rubrics for an evaluation is a common practice because it makes evaluation
criteria, and therefore learning goals, explicit for both learners and instructors [97]. Rubrics
are mainly found for the assessment of quality aspects. In [98], the authors propose a
rubric that can be used to provide feedback for code quality aspect that should be taught in
programming courses. In [99], the author proposes a rubric with two parts, one to assess
general style and design issues and one specific to the problem to be solved. In [100], the
authors develop a tool with modifiable grade rubrics. In [72], the authors propose that
instructors select assessment criteria to use when creating an assignment from a set of
predefined ones organised into five categories. In [49], the authors propose a rubric to assess
mobile application implemented with App Inventor. The latter can be used to support an
automatic assessment of the visual design of the submitted programs. In [52], the authors
also design rubrics to assess whether App Inventor and Snap! projects contribute to develop
computational thinking skills. In [86], the authors propose a generic rubric that is linked
with learners’ ability to develop an algorithm for a given problem.

2.3.4. Counterexample

Assessment systems that are using test-based approaches usually include counterex-
amples in their feedback. The majority of tools include failed test cases in the generated
feedback [25,71,94]. These are important to explain to learners why their codes are unsatis-
factory, help them to debug the code they submitted and also avoid most cases of learners
protesting. In [84], symbolic executions of submitted codes and a reference solution are
compared, and discovered path deviations are used to identify semantic differences. The
latter result in counterexamples as feedback, helping learners to understand what their
codes are missing to fix them.

In [47], the authors present a platform used to automatically assess web applications.
The feedback report generated by the tool contains step-by-step animation playbacks for
each evaluation that has been run for the requirements, with informative textual feed-
back. These feedback animations consist of screenshots sequences of the browser contents,
allowing learners to repeat the same scenario to correct their submissions.

2.3.5. Comment

Feedback can provide different kinds of comments to learners about the results of the
assessments that have been carried out on their code submissions. It is also important to
provide relevant comments when the assessment is not completely successful [21]. The
simplest possible comments consist of the error message if the code does not compile
or produces an execution errors or details about the tests that failed. In addition, it is
important for the comments to be relevant and constructive and to include warnings and
encouragements.

Several techniques have been developed to produce feedback comments that are
as relevant as possible. In [101,102], the authors develop a technique to improve the
compilation error messages, making them more understandable by learners and helping
them to correct their code submissions. Such “translations” of errors usually detected
by compilers or static analysers are very important in the case of novice programmers.
In [59], execution errors and uncaught exceptions are also rephrased to help learners
identify the root cause of their issues. In [83], the error type and the compiler message are
combined to generate a useful feedback message enriched with valid and invalid statement
examples, when relevant. In [103], the authors propose using clustering techniques to
gather similar code submissions into clusters in order to identify error classes. The idea is
then to associate specific and relevant feedback messages for each cluster, explaining what
is the corresponding error class. In [104], the authors propose to automatically generate
feedback by comparing the submitted code with a reference implementation. The produced
comments are meant to direct learners towards the reference implementation. In [44],
the authors propose an approach that generates hints about how to improve the style of



Software 2022, 1 15

submitted codes. Trying to indicate to learners what the causes of the reported errors are is
important for a comment to be effective [25]. This latter observation explains why several
tools make it possible for instructors to manually add comments. In [100], the authors
propose a system in which instructors can annotate the submissions with custom comments
and motivational stickers. In [67], hints are also provided to learners, but with an objective
to explain to them how they can improve their submissions.

2.3.6. Report

Finally, feedback can take the form of a report containing various information for
learners, possibly combining marks and comments explaining them. In [47], a report
with a summary of the whole assessment is produced along with detailed feedback for
each requirement of the assignment and the corresponding test cases. In [40], the authors
present a tool which generates reports based on a combination of the output produced
by several industrial JavaScript analysis tools. In [88], Juedes presents a tool to evaluate
programming projects which generates feedback in the form of a tree of web pages. The
produced feedback takes the form of a report indicating whether the submitted programs
compile, pass a set of tests, are correctly designed and are well documented. Each report
entry contains links to detailed information such as the shell output and the produced and
expected results for test cases [105]. In [106], the authors develop a technique to assess
whether chosen learning outcomes have been acquired by learners. To assess this, metrics
are computed on submitted codes and a probability that these programs contain convincing
evidences of the mastery of the learning objectives is derived. Finally, the generated report
contains a translation of these probabilities into textual feedback.

2.3.7. Other Kinds of Feedback

Other kinds of feedback are also possible. In [32], the authors propose to include a
screenshot of the mobile application just before a failure is detected, to help learners debug
their code. This screenshot can also be used for learners to interpret the test results and the
possible error stack trace.

Table 2 summarises the main kinds of produced feedback reviewed in this section,
organised by categories and related to the code aspect they are used to assess. Anti-
plagiarism is not in the table since no specific feedback reporting about this aspect has
been found.



Software 2022, 1 16

Table 2. Different kinds of feedback can be generated for instructors and learners for each kind of aspects that can be assessed on a submitted code or program.

Method/Technique Code Syntax Code Semantic Code Performance Code Quality

Status • Accepted or not [38] • Test-output associated [38]
• Level of achievement [33]
• Closeness to expected solution [65]

• Constraint satisfied or not [38] • Level of achievement [33]

Mark • Test-output associated [21]
• Weighted test cases [35]
• Proportion of succeeded tests [80]
• Composite grade [71,72,95,96]

• Metrics values associated [72]
• Test validity and completeness [58]

Rubric • Computational thinking
associated [52]

• Ability to design algorithm [86] • Generic rubric [98,99]
• Visual design associated [49]

Counterexample • Failed unit tests [40,71,94]
• Execution path [84]

• Failed interaction test [47]

Comment • Wrong code patterns [20]
• Syntax error

translation [59,83,101,102]

• Test-output associated [21,89]
• Execution error and exception

translation [59]

• Complexity associated [40] • Hint [44]

Report • Grading log [76]
• Test cases log [35,40,47,61]

• Metrics log [40]
• Style analyses log [42]



Software 2022, 1 17

3. Automated Assessment Tools

Since the beginning of the development of automated code assessment techniques,
tools to support them have been developed. As detailed in [1], they evolved from scripts to
web-oriented systems, going through tool-oriented applications. No tool seems to dominate
the market, and many tools are still being developed nowadays. Currently developed
systems are ranging from specific ones developed for one particular context to more generic
ones trying to integrate several existing tools into coherent systems.

3.1. Features

Four main features of automated code assessment systems are highlighted in [107]:
organising the assignments, receiving and storing learners’ submissions, supporting auto-
matic or semi-automatic assessment and providing feedback.

In addition, the possibility to integrate the developed tools with learning management
systems is considered as an essential feature by many researchers. For example, the GitGrade
system is integrated with Canvas [100]. Such an integration generally makes it possible to
directly have support for the two first aforementioned features, namely, the assignments
and submissions management.

Integrating plagiarism detection tools are also an important feature requested by in-
structors. Automated code assessment systems should generally be able to detect possible
plagiarism among code submissions for an assignment in a course. Depending on the
context, other sources may be used for the comparisons, such as code submissions from
previous semesters for the same assignment or from other courses or even codes available
on the Internet. Again, using learning management systems may make it easier to manage
a repository of all the submissions for a given assignment.

3.2. Tools and Systems

Table 3 summarises the tools analysed in the research presented in this paper. For
each of them, it provides the key references and some information on the kind of tool, the
code and program aspects that are assessed, the methods and techniques used for that, the
generated feedback, the supported programming languages and indications on whether it
integrates anti-plagiarism checks or not.

Most developed tools are web-based platforms that perform several analyses on sub-
mitted codes: checking syntax, testing for plagiarism, running test cases and evaluating
some code quality aspects. CodeMaster is dedicated to the assessment of block-based pro-
grams for mobile applications, measuring their complexity with respect to computational
thinking dimensions. It is highly configurable and allows instructors to select the analysis
to perform. [52,67]. The js-assess tool is a client-side web application relying on several
industrial tools to assess JavaScript programs [40]. ProgEdu is specific to Java programs
with a focus on code style violations [42,120]. WBGP is a web-based TCL/TK software
that makes it possible to annotate submitted codes with comments defined in a structured
way [88,105]. The BOSS system has both an application and a web-based client. It sup-
ports summative and formative assessments since learners can run tests before the final
submission and instructors can have their own test set for the final grading [109]. The
ProtoAPOGEE system can be used to test for semantic and for some quality aspects such
as robustness, resulting in a summary report with counterexamples for both aspects [47].
The E-Lab tool automatically generates test cases from a reference solution provided by
instructors and then runs them against codes submitted by learners.



Software 2022, 1 18

Table 3. Automated code assessment tools and systems can be characterised by several aspects summarised in this table: the kind of system, the code and program
aspects that can be assessed with the methods and techniques used for the assessment, the kind of supported feedback, the supported programming languages and
the anti-plagiarism tool used. A dash (–) in an entry means that the information has not been found in any reference.

Tool References Kind of Tool or
System

Code and Program
Aspects

Methods and
Techniques

Feedback Programming
Languages

Anti-Plagiarism

ACCE [87] Script Quality (style) AST edit distance and
clustering

– Python –

Apollo [106] Program Learning objective Static analyses and
metrics (PMD)

Report Processing –

ArTEMiS [89] Web-based Semantic Unit-testing Report Agnostic –
AutoGrader [61] Program Semantic and quality Unit-testing and

metrics (PMD)
Report Mainly Java –

AutoGrader [84] Python program Semantic Symbolic execution Counterexample – –
AutoLEP [73] Program Syntax and semantic Dependence graph

similarity and
test-based

Counterexample
and report

– –

Automata [85,86] Web-based Semantic and quality Test-based and
machine learning

Mark and report – –

AutoStyle [44,108] GUI program Quality (style) Edit distance Status and comment – –
AWAT [81] Program Semantic Test-based

(web-browser
automation)

– Agnostic –

BOSS [109] Program and
Web-based

Semantic and quality Unit-testing
and metrics

Mark and report Mainly Java Sherlock

CAC++ [110] C++ library Syntax Static analyses Comment C, C++
CodeMaster [49,52] Web-based Syntax Keyword search Mark, badge and

rubric
App Inventor and
Snap! projects

–

CodeOcean [59] Web-based Syntax, semantic
and quality

Unit-testing and linter Comment Agnostic –

CourseMaster [67,111] – Syntax, semantic
and quality

Static analyses and
test-based

Mark and comment Java and C++ –

eGrader [72] Program Syntax, semantic
and quality

Unit-testing, graph
similarity and metrics

Mark, comment and
report

Java –

E-Lab [112] Web-based Semantic Test-based – C, C++ and Java MOSS
Fitchfork [11] Web-based Semantic and

performance
Unit-testing Comment and report Agnostic –

FrenchPress [62] Eclipse plug-in Syntax and quality Static analyses Comment Java –



Software 2022, 1 19

Table 3. Cont.

Tool References Kind of Tool or
System

Code and Program
Aspects

Methods and
Techniques

Feedback Programming
Languages

Anti-Plagiarism

GAME [96,113] GUI program Syntax, semantic
and quality

Static analyses,
input–output
and metrics

Mark and report Java, C and C++ No

GitGrade [100] Web-based Syntax, semantic
and quality

Script and
manual review

Mark, rubrics,
comment

Agnostic MOSS

Gradeer [114] CLI program Syntax, semantic
and quality

Script, unit testing,
style analyses and
manual review

Mark and comment Java –

GradeIT [83] Prutor plug-in Semantic Program repair and
unit testing

Mark and comment C –

GRASP [95] Program Semantic Unit-testing Mark .NET framework
languages

–

GUI_Grader [35] Backend program Semantic Test-based and user
interaction simulation

Mark and report Java –

HoGG [80,115] Program Semantic and quality Test-based Report Java –
Infandango [94] Web-based Semantic Unit-testing Mark and

counterexample
Java –

INGInious [116] Backend server Semantic Unit-testing Pass-or-fail and
comment

Agnostic –

JavAssess [117,118] Java library Syntax and semantic AST analyses and
test-based

Mark Java

JEWL [34] Java library Semantic Unit-testing – Java –
js-assess [40] Web-based

(client-only)
Syntax, semantic,
quality and
performance

Unit testing, linter,
style analyses and
metrics

Report JavaScript –

mark44 [119] UNIX shell script Syntax, semantic
and quality

Input-output, metrics
and manual review

Mark and report C –

OCETJ [74] Web-based Semantic Unit-testing Comment Java –
Online Judge [38] Program Semantic, performance

and quality
Test-based Status and report – Yes

ProgEdu [42,120] Web-based Syntax, semantic
and quality

Style analyses
(CheckStyle)

Report Java Yes

ProtoAPOGEE [47] Web-based CMS Semantic and quality Test-based
(web-browser
automation)

Mark, report and
counterexample

Agnostic –



Software 2022, 1 20

Table 3. Cont.

Tool References Kind of Tool or
System

Code and Program
Aspects

Methods and
Techniques

Feedback Programming
Languages

Anti-Plagiarism

Pythia [39,77,78] Backend server Syntax, semantic
and quality

Input-output, unit
testing and script

Mark, comment
and report

Agnostic –

PSGE [76] Unix-based program Semantic Test-based Report and manual Agnostic –
Quiver [75] Web-based and

GUI program
Syntax and semantic Unit-testing Comment C++, Java and MIPS

Assembly Language
–

SCAGrader [45] Web-based Syntax Style analyses Mark C, Java and PHP –
Scheme-Robo [21] Email-based Syntax and semantic Structure analyses,

input–output (value)
and unit testing (fixed
and random)

Mark and comment Scheme Yes

SPT [60] Eclipse plug-in Quality – Report Java –
STAGE [57] Moodle plugin Semantic and quality Metrics Mark Java –
Style++ [46] Program (CLI

and GUI)
Quality Style analyses Mark and comment C++ –

VPL [107] Moodle plugin Dynamic Input-output, unit
testing, style analyses
and test coverage

Mark, comment
and report

Agnostic

WBGP [88,105] Software Syntax, semantic
and quality

Script and
manual review

Mark, comment
and report

Agnostic MOSS

WebBot [25,121] Web-Based Semantic Input-output Counterexample
and comment

Multi-language History comparison

Web-CAT [58,122] Program Semantic and quality Unit-testing and
test coverage

Mark and report Agnostic –



Software 2022, 1 21

Several existing tools only have an application client. The AutoStyle system is a GUI
program that can be used by instructors and learners to assess code style and provide three
kinds of hints: approach, syntactic and code skeletons [44,108]. The Scheme-robo tool is even
simpler, as learners just submit their code by sending an e-mail to a specific address. They
then receive a reply with a copy of their submission and a set of points with comments
for it [21]. The GAME tool is a GUI program that grades Java, C and C++ projects based
on a marking schema and strategy defined by instructors [96]. The Apollo program is a
tool to measure whether learners master learning objectives by extracting evidences from
submitted codes for assignments that have been specifically designed for each learning
objective. The evidences are obtained from metrics computed with PMD [106]. AutoGrader
runs symbolic executions of submitted codes and compares them with a reference solution.
This approach avoids the need to define or generate test cases while still being able to
provide counterexamples to learners when their submissions are wrong [84]. Web-CAT is
famous for grading how well a program has been tested by learners and used in many
courses that aim at encouraging learners to write tests [58,122]. The Gradeer tool is a simple
CLI program that is working in the other way round, in the sense that it is meant to be used
to assist a manual assessment [114].

Many tools are custom tailored solutions for specific programming languages generally
relying on existing algorithms and libraries to perform analyses. The ArTEMiS tool follows
an approach based on continuous integration (CI) allowing learners to upload codes
though a version control system to obtain immediate feedback from the CI server. It makes
it possible for this tool to be language-agnostic and highly configurable by defining custom
CI pipelines [89]. The Gradeer tool consists of scripts corresponding to checks that can be
performed on a code, each resulting in a mark and a comment that are gathered to form
a global feedback [114]. The GRASP tool is focused on the assessment of project written
for the .NET framework and implementing a component by only using unit testing [95].
The eGrader tool only focuses on Java and provides outcome analyses for instructors, along
with a database with statistics on all submissions [72].

Specific and simpler systems includes Infandango, an open source, web-based system
that can run Java programs against a set of fine-grained JUnit unit tests to assign a grade to
each submitted program [94]. The mark44 system is also very simple, as it is implemented as
a single UNIX shell script that can assess C programs to produce a mark from tests, metrics
and human inputs [119]. The PSGE system is also a simple UNIX-based program that can
handle fully and semi-automated assessments of code following a test-based approach [76].
The ACCE tool is just a set of scripts that computes the similarity of submitted codes with
other submissions to perform a clustering to assess style aspects [87].

Several tools have been built in a highly customisable way by making it possible to
combine them with external modules for more specific analyses. The Style++ tool can
integrate style analysers for C++ programs [46]. The SCAGrader tool uses industrial tools
to assess the style of C, Java and PHP programs, and its grader server can be used by a
dedicated GUI or as a service by other tools [45].

Finally, some tools are just libraries that can be used to develop custom course man-
agement systems or can be integrated within existing learning management systems. JEWL
is a Java library to create GUI with a mock version that can be used for automatic as-
sessment [34]. CAC++ is a C++ library developed to help instructors design their own
assessment programs for C and C++ assignments [110]. Some systems have also been im-
plemented as programs to be run as backend services to ease the integration with existing
frontend ones. The GUI_Grader program is used to assess whether a GUI matches a set
of requirements defined with a database describing the constraints and requirements for
each GUI component [35]. The INGInious tool has been develop to assess code submitted
on the edX platform in the context of an MOOC [116]. The Pythia platform has also been
implemented as a backend server whose features can be integrated in several frontends, in
particular thanks to its REST API [39,77,78].



Software 2022, 1 22

3.3. Security

An important aspect of automated code assessment systems is that special attention
should be paid to computer security. They indeed are generally running codes submitted
by learners, or at least analyses on them, which may be harmful, should it be voluntary
or not. Generally, automated code assessment systems are executing code submissions
inside sandboxes [11,94,112]. These are usually implemented as disposable virtual machines
created for a specific job or as containers to provide lighter isolation as used in [116]. Other
solutions can be used, such as User-Mode Linux as used in [39].

4. Integration in the Learning Process

Automated code assessment systems can be used for several purposes, combined
with different pedagogical approaches and in various phases of the learning process.
Moreover, some systems are only designed for summative or formative assessments, while
the majority of them can be used for both kinds.

4.1. Grading

The initial and main use of automated code assessment systems was to help instructors
to correct assignments and projects made by learners. With such systems, there are no
interactions with learners, except for the submission of their works. A report is then
produced for instructors, possibly with proposed marks for each submission. The benefit
in the learning process is the possibility for learners to have more assignments to work
on since the correction time is reduced for instructors. Quickly, the assessment systems
evolved and became tools to support learners by encouraging them to work and helping
them to learn.

4.2. Active Learning

Pedagogical approaches based on active learning are adapted to the use of automated
code assessment systems that are able to produce feedback for learners. Several pieces of
research highlight the fact that instant feedback contributes to helping learners to make
progress incrementally and continuously and learn from their failures. In [93], the authors
propose using automated code assessment at different stages of a project. The aim is
to provide learners with feedback on work-in-progress submissions prior to the final
submission. Pre-deadline results improve as the number of feedback units increase, and
post-deadline activities also improve as more feedback units are available. Learners are
definitely encouraged to work and make progress when feedback is available and precise.

Instant feedback allows learners to iteratively solve assignments. In [74], the authors
propose to define a public and a private test suite so that the public one can be used by
learners for self-evaluation while working on the assignments and the private one is used
for marking purpose. Such a setting is usual for unit-testing-based approaches. In [42], the
authors develop an iterative learning environment, allowing learners to submit codes until
meeting the necessary requirements or reaching the assignment deadline. Their system
also makes it possible to track changes between submissions. In [89], the same possibility
to iteratively solve exercises with resubmissions is used to make active learning possible in
the context of large classes. In [46], both learners and instructors are using an automated
code style assessment tool. Learners use it to obtain feedback and adjust their code while
working on it. Instructors use it for the evaluation of the final version submitted for the
given deadline.

4.3. Learning Behaviour

Another possible use of automated code assessment systems is the monitoring of
learners’ behaviour. Information collected by these systems can help instructors to better
understand learners and how they are performing. In [123], the authors analyse data
collected by an automated assessment system with data mining techniques. They manage
to identify patterns that are predictive of final achievements for the course.



Software 2022, 1 23

4.4. Semi-Automated Code Assessment

Only relying on automated code assessment systems may not be enough to support
learners in their learning process, and there should generally be a possibility for a human
assessment as well. In [119], the author develops a simple semi-automated code assessment
system based on a UNIX shell script, which can prompt human instructors for more
advanced judgements. More advanced tools have also been designed to let human experts
perform the grading, with a significant help of software support. For example, WBGP
and GitGrade both make it possible for instructors to browse through code submissions,
establish a mark and annotate them with feedback comments [88,100].

5. Discussions

This section discusses whether the review presented in this paper manages to bring
answers to the three addressed research questions.

5.1. Feasible Kinds of Assessment

The review conducted for the research presented in this paper highlights several
considerations related to automated code assessment systems. It makes it possible to
identify several possible kinds of assessments that can be performed on single code or more
complete program or project submissions. Usually, code assessment tools are focusing
on syntax and semantic aspects, which is typically limited to test-based analyses. But
depending on the learning objectives instructors want for their learners, it is also possible
to put a focus on plagiarism checks and on code performance and code quality assessment.
These aspects presented in Section 2 provide answer elements to the first research question.

5.2. Assessment Quality

The second research question is about the quality of the automatically produced
assessments. Only a few studies have been conducted to compare automatic and manual
code assessments. Even if they tend to show that automatic assessments can be as good as
human grading for several criteria such as fairness and consistency, the proposed review
is not conclusive for this question. In addition, the existence of semi-automatic systems
where instructors are helped by automated code assessment techniques tends to show that
human input is still needed in certain contexts, as highlighted in Section 4.

5.3. Challenges for Automated Code Assessment

Finally, the third research question asks about the main challenges related to the
development of automated code assessment systems. The first category of challenges that
has been identified consists of technical ones. To obtain better assessment with more useful
and relevant feedback, new methods and techniques must be designed. Only a few studies
use artificial intelligence or big data techniques, which may be explained by the youth
of the domain and the non-existence of large datasets. A challenge may be to provide
more “intelligent” assessments based on artificial intelligence techniques. Another issues is
code plagiarism, which is unfortunately quite common, in particular for simple and small
assignments. A challenge is to find ways to automatically generate different assignments
that can be automatically assessed so that learners cannot copy codes from other learners
anymore. The condition to maintain evaluation fairness would be to generate assignments
targeting similar skills and with similar difficulty levels.

5.3.1. Human Intervention and Assessment Quality

Fully automated code assessments do have their drawbacks, but they are sometimes
the only way to go, for example, with large classes. Even if they contribute a lot in
helping both instructors and learners, future developments should probably be focused on
approaches combining automated and human grading. In [124], automated and manual
assessments have been fully integrated, manual interventions being required all along the
automatic grading. Such an approach that is not limited to the usual sequential one with



Software 2022, 1 24

a clear split between automatic and manual phases should maybe be explored more in
the future.

5.3.2. Cheating and Creativity

Programming usually relies on a trial-and-error approach to fix errors and so do
learners. When facing an automated code assessment system, they may use it following
the same approach, making submissions until managing to find a “correct” one, at least
according to the system. This is particularly true with systems using test-based approaches
with a limited number of test cases that can be guessed by learners. As highlighted in [125],
moving learners towards a reflection-in-action approach is a challenge for which solutions
have to be found.

Another challenge due to cheating techniques used by fraudulent learners is that they
may interfere with code analysis techniques [126]. This possible interference should maybe
be part of the solution, in particular with code style analysis techniques. If automated code
assessment systems do assess quality aspects, code obfuscation is maybe not an option for
fraudulent learners.

A related challenge is the fact that most of the existing automated code assessment
systems may reduce learners’ creativity. This is usually the case with test-based approaches
that often have such specific specifications and requirements to make it possible to assess
them automatically that possible learners’ submissions are limited.

5.3.3. Collaboration and Interoperability

Another challenge related to automated code assessment systems is the lack of col-
laborations [127]. As highlighted by the review presented in this paper, a large number
of platforms are being developed. These platforms are often not designed to make it
possible to reuse analyses components in other ones, making collaboration difficult. Several
reasons can explain this observation. First of all, institutions usually develop a platform
trying to first satisfy their own specific needs should they be related to the programming
languages taught to their students or to requirement specific to the taught courses. Another
reason is maybe the lack of common models to grade assignments and the wide variety
of possible assignments [12]. However, several existing platforms are heavily relying on
industrial tools to perform the analyses [40], which may be part of a solution towards more
collaboration and cooperation. In addition, in the review presented in [1], three generations
of automated code assessment systems are described. A possible fourth one could be tools
implemented as an API, as cloud services or following a Learning Tools Interoperability
(LTI) interface, making it easier to integrate them in learning management systems [32,59].

6. Conclusions

To conclude, the review presented in this paper covers recent pieces of research related
to automated code assessment tools and systems. The research questions addressed in this
paper led to a classification of the recent tools along different axes: the code and program
aspects that are assessed, the methods and techniques used by the tools and the kinds of
generated feedback. The review also highlighted several ways to integrate automated code
assessment tools in the learning process.

Regarding the three research questions covered in this paper, the conducted review
managed to bring answers to the first and third questions. Unfortunately, it was not
possible to answer the second question asking whether the results obtained by automated
code assessment systems are as good as those obtained by human graders or not. No pieces
of research specific to this have been found.

In addition to present an up-to-date review covering several aspects of automated
code assessment techniques and tools, this article brings a discussion on many challenges
to tackle for the community of researchers. Possible solution elements emerged from the
discussions and may be interesting directions of work towards more collaboration and
towards better modular systems that can be easily used to cover different needs. Future



Software 2022, 1 25

work to follow on the proposed review is the development of a website and a community
of practices to help researchers to work together.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Douce, C.; Livingstone, D.; Orwell, J. Automatic Test-Based Assessment of Programming: A Review. J. Educ. Resour. Comput.

2005, 5, 215–221. [CrossRef]
2. Ala-Mutka, K.M. A Survey of Automated Assessment Approaches for Programming Assignments. Comput. Sci. Educ. 2005,

15, 83–102. [CrossRef]
3. Lajis, A.; Baharudin, S.A.; Kadir, D.A.; Ralim, N.M.; Nasir, H.M.; Aziz, N.A. A Review of Techniques in Automatic Programming

Assessment for Practical Skill Test. J. Telecommun. Electron. Comput. Eng. 2018, 10, 109–113.
4. Keuning, H.; Jeuring, J.; Heeren, B. A Systematic Literature Review of Automated Feedback Generation for Programming

Exercises. ACM Trans. Comput. Educ. 2018, 19, 1–43. [CrossRef]
5. Aldriye, H.; Alkhalaf, A.; Alkhalaf, M. Automated Grading Systems for Programming Assignments: A Literature Review. Int. J.

Adv. Comput. Sci. Appl. 2019, 10, 215–221. [CrossRef]
6. Ismail, M.H.; Lakulu, M.M. A Critical Review on Recent Proposed Automated Programming Assessment Tool. Turk. J. Comput.

Math. Educ. 2021, 12, 884–894.
7. Rahman, K.A.; Nordin, M.J. A Review on the Static Analysis Approach in the Automated Programming Assessment Systems. In

Proceedings of the 2007 National Conference on Programming, Montreal, QC, Canada, 21–25 October 2007.
8. Liang, Y.; Liu, Q.; Xu, J.; Wang, D. The Recent Development of Automated Programming Assessment. In Proceedings of the 2009

International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009.
9. Ihantola, P.; Ahoniemi, T.; Karavirta, V.; Seppälä, O. Review of Recent Systems for Automatic Assessment of Programming

Assignments. In Proceedings of the 10th Koli Calling International Conference on Computing Education Research, Koli, Finland,
28–31 October 2010; ACM: New York, NY, USA, 2010; pp. 86–93.

10. Romli, R.; Sulaiman, S.; Zamli, K.Z. Automatic Programming Assessment and Test Data Generation: A Review on its Approaches.
In Proceedings of the 2010 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 15–17 June 2010;
pp. 1186–1192.

11. Pieterse, V. Automated Assessment of Programming Assignments. In Proceedings of the 3rd Computer Science Education
Research Conference on Computer Science Education Research, Arnhem, The Netherlands, 4–5 April 2013; ACM: New York, NY,
USA, 2013; pp. 45–56.

12. Caiza, J.C.; Alamo, J.M.D. Programming Assignments Automatic Grading: Review of Tools and Implementations. In Proceedings
of the 7th International Technology, Education and Development Conference, Valencia, Spain, 4–6 March 2013; pp. 5691–5700.

13. Striewe, M.; Goedicke, M. A Review of Static Analysis Approaches for Programming Exercises. In Proceedings of the 2014 Inter-
national Computer Assisted Assessment Conference, Zeist, The Netherlands, 30 June–1 July 2014; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 100–113.

14. Staubitz, T.; Klement, H.; Renz, J.; Teusner, R.; Meinel, C. Towards practical programming exercises and automated assessment in
Massive Open Online Courses. In Proceedings of the 2015 IEEE International Conference on Teaching, Assessment, and Learning
for Engineering, Zhuhai, China, 10–12 December 2015; pp. 23–30.

15. Arifi, S.M.; Abdellah, I.N.; Zahi, A.; Benabbou, R. Automatic Program Assessment Using Static and Dynamic Analysis. In
Proceedings of the Third World Conference on Complex Systems, Marrakech, Morocco, 23–25 November 2015.

16. Keuning, H.; Jeuring, J.; Heeren, B. Towards a Systematic Review of Automated Feedback Generation for Programming Exercises.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Arequipa, Peru,
11–13 July 2016; ACM: New York, NY, USA, 2016; pp. 41–46.

17. Souza, D.M.; Felizardo, K.R.; Barbosa, E.F. A Systematic Literature Review of Assessment Tools For Programming Assignments.
In Proceedings of the IEEE 29th International Conference on Software Engineering Education and Training, Dallas, TX, USA, 5–6
April 2016; pp. 147–156.

18. Gupta, S.; Gupta, A. E-Assessment Tools for Programming Languages: A Review. In Proceedings of the First International
Conference on Information Technology and Knowledge Management, New Delhi, India, 22–23 December 2017; pp. 65–70.

19. Hollingsworth, J. Automatic Graders for Programming Classes. Commun. ACM 1960, 3, 528–529. [CrossRef]
20. Hegarty-Kelly, E.; Mooney, A. Analysis of an Automatic Grading System Within First Year Computer Science Programming

Modules. In Proceedings of the Computing Education Practice, Durham, UK, 7 January 2021; ACM: New York, NY, USA, 2021;
pp. 17–20.

21. Saikkonen, R.; Malmi, L.; Korhonen, A. Fully Automatic Assessment of Programming Exercises. In Proceedings of the 6th
Annual Conference on Innovation and Technology in Computer Science Education, Canterbury, UK, 25–27 June 2001; ACM:
New York, NY, USA, 2001; pp. 133–136.

22. Albluwi, I. Plagiarism in Programming Assessments: A Systematic Review. ACM Trans. Comput. Educ. 2020, 20, 1–28. [CrossRef]

http://doi.org/10.1145/1163405.1163409
http://dx.doi.org/10.1080/08993400500150747
http://dx.doi.org/10.1145/3231711
http://dx.doi.org/10.14569/IJACSA.2019.0100328
http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1145/3371156


Software 2022, 1 26

23. Novak, M. Review of Source-Code Plagiarism Detection in Academia. In Proceedings of the 39th International Convention on
Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia, 30 May–3 June 2016; pp. 796–801.

24. Novak, M.; Joy, M.; Kermek, D. Source-Code Similarity Detection and Detection Tools Used in Academia: A Systematic Review.
ACM Trans. Comput. Educ. 2019, 19, 1–37. [CrossRef]

25. Colton, D.; Fife, L.; Thompson, A. A Web-Based Automatic Program Grader. Inf. Syst. Educ. J. 2006, 4, 7.
26. Alhami, I.; Alsmadi, I. Automatic Code Homework Grading Based on Concept Extraction. Int. J. Softw. Eng. Its Appl. 2011,

5, 77–84.
27. Kurtukova, A.; Romanov, A.; Shelupanov, A. Source Code Authorship Identification Using Deep Neural Networks. Symmetry

2020, 12, 2044. [CrossRef]
28. Karnalim, O.; Kurniawati, G. Programming Style on Source Code Plagiarism and Collusion Detection. Int. J. Comput. 2020,

19, 27–38. [CrossRef]
29. Cosma, G.; Joy, M. Towards a Definition of Source-Code Plagiarism. IEEE Trans. Educ. 2008, 51, 195–200. [CrossRef]
30. Hamilton, M.; Tahaghoghi, S.; Walker, C. Educating Students about Plagiarism Avoidance—A Computer Science Perspective.

In Proceedings of the 2004 International Conference on Computers in Education, Melbourne, Australia, 30 November 2004;
pp. 1275–1284.

31. Pierce, J.; Zilles, C. Investigating Student Plagiarism Patterns and Correlations to Grades. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, Seattle, WA, USA, 8–11 March 2017; ACM: New York, NY, USA,
2017; pp. 471–476.

32. Bruzual, D.; Montoya Freire, M.L.; Di Francesco, M. Automated Assessment of Android Exercises with Cloud-native Technologies.
In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education, Trondheim, Norway,
15–19 June 2020; ACM: New York, NY, USA, 2020; pp. 40–46.

33. Khalid, A. Automatic Assessment of Java Code. Maldives Natl. J. Res. 2013, 1, 7–32.
34. English, J. Automated Assessment of GUI Programs using JEWL. SIGCSE Bull. 2004, 36, 137–141. [CrossRef]
35. Feng, M.Y.; McAllister, A. A Tool for Automated GUI Program Grading. In Proceedings of the 36th ASEE/IEEE Frontiers in

Education Conference, San Diego, CA, USA, 27–31 October 2006.
36. Hull, M.; Guerin, C.; Chen, J.; Routray, S.; Chau, D.H. Towards Automatic Grading of D3.js Visualizations. In Proceedings of the

2021 IEEE Visualization Conference, New Orleans, LA, USA, 24–29 October 2021.
37. Lingling, M.; Xiaojie, Q.; Zhihong, Z.; Gang, Z.; Ying, X. An Assessment Tool for Assembly Language Programming. In

Proceedings of the 2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14
December 2008; pp. 882–884.

38. Cheang, B.; Kurnia, A.; Lim, A.; Oon, W.C. On Automated Grading of Programming Assignments in an Academic Institution.
Comput. Educ. 2003, 41, 121–131. [CrossRef]

39. Combéfis, S.; le Clément de Saint-Marcq, V. Teaching Programming and Algorithm Design with Pythia, a Web-Based Learning
Platform. Olymp. Informat. 2012, 6, 31–43.

40. Karavirta, V.; Ihantola, P. Automatic Assessment of JavaScript Exercises. In Proceedings of the 1st Educators’ Day on Web
Engineering Curricula, Vienna, Austria, 5–9 July 2010.

41. Keuning, H.; Heeren, B.; Jeuring, J. Code Quality Issues in Student Programs. In Proceedings of the 2017 ACM Conference
on Innovation and Technology in Computer Science Education, Bologna, Italy, 3–5 July 2017; ACM: New York, NY, USA, 2017;
pp. 110–115.

42. Chen, H.M.; Chen, W.H.; Lee, C.C. An Automated Assessment System for Analysis of Coding Convention Violations in Java
Programming Assignments. J. Inf. Sci. Eng. 2018, 34, 1203–1221.

43. Jansen, J.; Oprescu, A.; Bruntink, M. The Impact of Automated Code Quality Feedback in Programming Education. In Proceedings
of the 2017 Seminar Series on Advanced Techniques and Tools for Software Evolution, Madrid, Spain, 7–9 June 2017.

44. Moghadam, J.B.; Choudhury, R.R.; Yin, H.; Fox, A. AutoStyle: Toward Coding Style Feedback at Scale. In Proceedings of the 2nd
ACM Conference on Learning @ Scale, Vancouver, BC, Canada, 14–18 March 2015; ACM: New York, NY, USA, 2015; pp. 261–266.

45. Yulianto, S.V.; Liem, I. Automatic Grader for Programming Assignment Using Source Code Analyzer. In Proceedings of the 2014
International Conference on Data and Software Engineering, Bandung, Indonesia, 26–27 November 2014.

46. Ala-Mutka, K.; Uimonen, T.; Jarvinen, H.M. Supporting Students in C++ Programming Courses with Automatic Program Style
Assessment. J. Inf. Technol. Educ. 2004, 3, 245–262. [CrossRef]

47. Fu, X.; Peltsverger, B.; Qian, K.; Tao, L.; Liu, J. APOGEE: Automated Project Grading and Instant Feedback System for Web-Based
Computing. ACM SIGCSE Bull. 2008, 40, 77–81. [CrossRef]

48. Gradjanin, E.; Prazina, I.; Okanovic, V. Automatic Web Page Robustness Grading. In Proceedings of the 44th International
Convention on Information, Communication and Electronic Technology, Opatija, Croatia, 27 September–1 October 2021.

49. Solecki, I.; Porto, J.; da Cruz Alves, N.; Gresse von Wangenheim, C.; Hauck, J.; Borgatto, A.F. Automated Assessment of the Visual
Design of Android Apps Developed with App Inventor. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, Portland, OR, USA, 11–14 March 2020; pp. 51–57.

50. Stanger, N. Semi-Automated Assessment of SQL Schemas via Database Unit Testing. In Proceedings of the 26th International
Conference on Computers in Education, Manila, Philippines, 26–30 November 2018.

http://dx.doi.org/10.1145/3313290
http://dx.doi.org/10.3390/sym12122044
http://dx.doi.org/10.47839/ijc.19.1.1690
http://dx.doi.org/10.1109/TE.2007.906776
http://dx.doi.org/10.1145/1026487.1008033
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.28945/300
http://dx.doi.org/10.1145/1352322.1352163


Software 2022, 1 27

51. Moreno-León, J.; Robles, G.; Román-González, M. Dr. Scratch: Automatic Analysis of Scratch Projects to Assess and Foster
Computational Thinking. RED-Rev. Educ. Distancia 2015, 46, 1–23.

52. von Wangenheim, C.G.; Hauck, J.C.; Demetrio, M.F.; Pelle, R.; da Cruz Alves, N.; Barbosa, H.; Azevedo, L.F. CodeMaster—
Automatic Assessment and Grading of App Inventor and Snap! Programs. Informat. Educ. 2018, 17, 117–150. [CrossRef]

53. Hodgkinson, B.; Lutteroth, C.; Wünsche, B. glGetFeedback—Towards Automatic Feedback and Assessment for OpenGL
3D Modelling Assignments. In Proceedings of the 2016 International Conference on Image and Vision Computing New
Zealand, Palmerston North, New Zealand, 21–22 November 2016.

54. Wünsche, B.C.; Chen, Z.; Shaw, L.; Suselo, T.; Leung, K.C.; Dimalen, D.; van der Mark, W.; Luxton-Reilly, A.; Lobb, R. Automatic
Assessment of OpenGL Computer Graphics Assignments. In Proceedings of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, Larnaca, Cyprus, 2–4 July 2018; ACM: New York, NY, USA, 2018; pp. 81–86.

55. Korhonen, A.; Malmi, L. Algorithm Simulation with Automatic Assessment. In Proceedings of the 5th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in Computer Science Education, Helsinki, Finland, 11–13 July 2000; ACM: New York,
NY, USA, 2000; pp. 160–163.

56. Kaila, E.; Rajala, T.; Laakso, M.J.; Salakoski, T. Automatic Assessment of Program Visualization Exercises. In Proceedings of the
8th International Conference on Computing Education Research, Koli, Finland, 13–16 November 2008; ACM: New York, NY,
USA, 2008; pp. 101–104.

57. Pape, S.; Flake, J.; Beckmann, A.; Jürjens, J. STAGE: A Software Tool for Automatic Grading of Testing Exercises: A Case Study
Paper. In Proceedings of the 38th International Conference on Software Engineering Companion, Austin, TX, USA, 14–22 May
2016; pp. 491–500.

58. Edwards, S.H. Improving Student Performance by Evaluating How Well Students Test Their Own Programs. J. Educ. Resour.
Comput. 2003, 3. [CrossRef]

59. Serth, S.; Staubitz, T.; Teusner, R.; Meinel, C. CodeOcean and CodeHarbor: Auto-Grader and Code Repository. In Proceedings
of the 7th SPLICE Workshop at SIGCSE 2021: CS Education Infrastructure for All III: From Ideas to Practice, online, 15–16
March 2021.

60. Ardimento, P.; Bernardi, M.L.; Cimitile, M. Towards automatic assessment of object-oriented programs. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings, Seoul, Korea, 5–11 October 2020;
ACM: New York, NY, USA, 2020; pp. 276–277.

61. Helmick, M.T. Interface-Based Programming Assignments and Automatic Grading of Java Programs. In Proceedings of the 12th
Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, Dundee, Scotland, UK, 25–27 June
2007; ACM: New York, NY, USA, 2012; pp. 63–67.

62. Blau, H.; Moss, J.E.B. FrenchPress Gives Students Automated Feedback on Java Program Flaws. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education, Vilnius, Lithuania, 4–8 July 2015; ACM: New York,
NY, USA, 2015; pp. 15–20.

63. Abelló, A.; Burgués, X.; Casany, M.J.; Martín, C.; Quer, C.; Rodríguez, M.E.; Romero, O.; Urpí, T. A Software Tool for E-Assessment
of Relational Database Skills. Int. J. Eng. Educ. 2016, 32, 1289–1312.

64. Chandra, B.; Chawda, B.; Kar, B.; Reddy, K.V.M.; Shah, S.; Sudarshan, S. Data Generation for Testing and Grading SQL Queries.
VLDB J. 2015, 24, 731–755. [CrossRef]

65. Simanjuntak, H. Proposed Framework for Automatic Grading System of ER Diagram. In Proceedings of the 7th International
Conference on Information Technology and Electrical Engineering, Chiang Mai, Thailand, 29–30 October 2015; pp. 141–146.

66. Thomas, P.; Waugh, K.; Smith, N. Experiments in the Automatic Marking of ER-Diagrams. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education, Monte de Caparica, Portugal, 27–29 June
2005; ACM: New York, NY, USA, 2005; pp. 158–162.

67. Higgins, C.; Symeonidis, P.; Tsintsifas, A. The Marking System for CourseMaster. ACM SIGCSE Bull. 2002, 34, 46–50. [CrossRef]
68. Wang, Z.; Xu, L. Grading Programs Based on Hybrid Analysis. In Proceedings of the International Conference on Web

Information Systems and Applications, Qingdao, China, 20–22 September 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 626–637.

69. Wang, J.; Zhao, Y.; Tang, Z.; Xing, Z. Combining Dynamic and Static Analysis for Automated Grading SQL Statements. J. Netw.
Intell. 2020, 5, 179–190.

70. Breuker, D.M.; Derriks, J.; Brunekreef, J. Measuring Static Quality of Student Code. In Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science Education, Darmstadt, Germany, 27–29 June 2011; ACM:
New York, NY, USA, 2011; pp. 13–17.

71. Earle, C.B.; Åke Fredlund, L.; Hughes, J. Automatic Grading of Programming Exercises using Property-Based Testing. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Arequipa, Peru,
11–13 July 2016; ACM: New York, NY, USA, 2016; pp. 47–52.

72. AlShamsi, F.; Elnagar, A. An Automated Assessment and Reporting Tool for Introductory Java Programs. In Proceedings of the
2011 International Conference on Innovations in Information Technology, Abu Dhabi, UAE, 25–27 April 2011; pp. 324–329.

73. Wang, T.; Su, X.; Ma, P.; Wang, Y.; Wang, K. Ability-Training-Oriented Automated Assessment in Introductory Programming
Course. Comput. Educ. 2011, 56, 220–226. [CrossRef]

http://dx.doi.org/10.15388/infedu.2018.08
http://dx.doi.org/10.1145/1029994.1029995
http://dx.doi.org/10.1007/s00778-015-0395-0
http://dx.doi.org/10.1145/637610.544431
http://dx.doi.org/10.1016/j.compedu.2010.08.003


Software 2022, 1 28

74. Tremblay, G.; Labonté, E. Semi-Automatic Marking of Java Programs Using JUnit. In Proceedings of the International Conference
on Education and Information Systems: Technologies and Applications, Orlando, FL, USA, July 31–August 2 2003; pp. 42–47.

75. Ellsworth, C.C.; Fenwick, J.B.; Kurtz, B.L. The Quiver System. In Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, Norfolk, VA, USA, 3–7 March 2004; ACM: New York, NY, USA, 2004; pp. 205–209.

76. Jones, E.L. Grading Student Programs—A Software Testing Approach. J. Comput. Sci. Coll. 2001, 16, 185–192.
77. Combéfis, S.; de Moffarts, G. Automated Generation of Computer Graded Unit Testing-Based Programming Assessments for

Education. In Proceedings of the 6th International Conference on Computer Science, Engineering and Information Technology,
Zurich, Switzerland, 23–24 November 2019; pp. 91–100.

78. Combéfis, S.; Paques, A. Pythia reloaded: An Intelligent Unit Testing-Based Code Grader for Education. In Proceedings of the 1st
Int’l Code Hunt Workshop on Educational Software Engineering, Baltimore, MD, USA, 14 July 2015; ACM: New York, NY, USA,
2015; pp. 5–8.

79. Fonte, D.; da Cruz, D.; Gançarski, A.L.; Henriques, P.R. A Flexible Dynamic System for Automatic Grading of Programming
Exercises. In Proceedings of the 2nd Symposium on Languages, Applications and Technologies, Porto, Portugal, 20–21 June 2013;
pp. 129–144.

80. Morris, D.S. Automatically Grading Java Programming Assignments via Reflection, Inheritance, and Regular Expressions. In
Proceedings of the 32nd ASEE/IEEE Annual Frontiers in Education, Boston, MA, USA, 6–9 November 2002.

81. Sztipanovits, M.; Qian, K.; Fu, X. The Automated Web Application Testing (AWAT) System. In Proceedings of the 46th Annual
Southeast Regional Conference on XX, Auburn, AL, USA, 28–29 March 2008; ACM: New York, NY, USA, 2008; pp. 88–93.

82. Gulwani, S.; Radiček, I.; Zuleger, F. Automated Clustering and Program Repair for Introductory Programming Assignments.
ACM Sigplan Not. 2018, 53, 465–480. [CrossRef]

83. Parihar, S.; Dadachanji, Z.; Singh, P.K.; Das, R.; Karkare, A.; Bhattacharya, A. Automatic Grading and Feedback using Program
Repair for Introductory Programming Courses. In Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education, Bologna, Italy, 3–5 July 2017; ACM: New York, NY, USA, 2017; pp. 92–97.

84. Liu, X.; Wang, S.; Wang, P.; Wu, D. Automatic Grading of Programming Assignments: An Approach Based on Formal Semantics.
In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Software Engineering Education and
Training, Montreal, QC, Canada, 25–31 May 2019; pp. 126–137.

85. Srikant, S.; Aggarwal, V. Automatic Grading of Computer Programs: A Machine Learning Approach. In Proceedings of the 12th
International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; pp. 85–92.

86. Srikant, S.; Aggarwal, V. A System to Grade Computer Programming Skills Using Machine Learning. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014;
ACM: New York, NY, USA, 2014; pp. 1887–1896.

87. Rogers, S.; Tang, S.; Canny, J. ACCE: Automatic Coding Composition Evaluator. In Proceedings of the 1st ACM Conference on
Learning @ Scale, Atlanta, GA, USA, 4–5 March 2014; ACM: New York, NY, USA, 2014; pp. 191–192.

88. Juedes, D.W. Web-Based Grading: Further Experiences and Student Attitudes. In Proceedings of the 35th ASEE/IEEE Frontiers
in Education Conference, Indianopolis, IN, USA, 19–22 October 2005.

89. Krusche, S.; Seitz, A. ArTEMiS: An Automatic Assessment Management System for Interactive Learning. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education, Baltimore, MD, USA, 21–24 February 2018; ACM: New York,
NY, USA, 2018; pp. 284–289.

90. Hattie, J.; Timperley, H. The Power of Feedback. Rev. Educ. Res. 2007, 77, 81–112. [CrossRef]
91. Shute, V.J. Focus on Formative Feedback. Rev. Educ. Res. 2008, 78, 153–189. [CrossRef]
92. Combéfis, S.; Beresnevičius, G.; Dagienė, V. Learning Programming through Games and Contests: Overview, Characterisation

and Discussion. Olymp. Informat. 2016, 10, 39–60. [CrossRef]
93. Falkner, N.; Vivian, R.; Piper, D.; Falkner, K. Increasing the Effectiveness of Automated Assessment by Increasing Marking

Granularity and Feedback Units. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education, Atlanta,
GA, USA, 5–8 March 2014; ACM: New York, NY, USA, 2014; pp. 9–14.

94. Hull, M.; Powell, D.; Klein, E. Infandango: Automated Grading for Student Programming. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education, Darmstadt, Germany, 27–29 June 2011; ACM:
New York, NY, USA, 2011; p. 330.

95. Cerioli, M.; Cinelli, P. GRASP: Grading and Rating ASsistant Professor. In Proceedings of the ACM-IFIP Informatics Education
Europe III Conference, Venice, Italy, 4–5 December 2008; pp. 37–51.

96. Blumenstein, M.; Green, S.; Nguyen, A.; Muthukkumarasamy, V. GAME: A Generic Automated Marking Environment for
Programming Assessment. In Proceedings of the 2004 International Conference on Information Technology: Coding and
Computing, Las Vegas, NV, USA, 5–7 April 2004; pp. 212–216.

97. Allen, D.; Tanner, K. Rubrics: Tools for Making Learning Goals and Evaluation Criteria Explicit for Both Teachers and Learners.
CBE Life Sci. Educ. 2006, 5, 197–203. [CrossRef]

98. Stegeman, M.; Barendsen, E.; Smetsers, S. Designing a Rubric for Feedback on Code Quality in Programming Courses. In
Proceedings of the 16th Koli Calling International Conference on Computing Education Research, Koli, Finland, 24–27 November
2016; ACM: New York, NY, USA, 2016; pp. 160–164.

http://dx.doi.org/10.1145/3296979.3192387
http://dx.doi.org/10.3102/003465430298487
http://dx.doi.org/10.3102/0034654307313795
http://dx.doi.org/10.15388/ioi.2016.03
http://dx.doi.org/10.1187/cbe.06-06-0168


Software 2022, 1 29

99. Becker, K. Grading Programming Assignments Using Rubrics. In Proceedings of the 8th Annual Conference on Innovation and
Technology in Computer Science Education, Thessaloniki, Greece, 30 June–2 July 2003; ACM: New York, NY, USA, 2003; p. 253.

100. Zhang, J.K.; Lin, C.H.; Hovik, M.; Bricker, L.J. GitGrade: A Scalable Platform Improving Grading Experiences. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education, Portland, OR, USA, 11–14 March 2020; ACM: New York,
NY, USA, 2020; p. 1284.

101. Hristova, M.; Misra, A.; Rutter, M.; Mercuri, R. Identifying and Correcting Java Programming Errors for Introductory Computer
Science Students. ACM SIGCSE Bull. 2003, 35, 153–156. [CrossRef]

102. Blok, T.; Fehnker, A. Automated Program Analysis for Novice Programmers. In Proceedings of the 3rd International Conference
on Higher Education Advances, Valencia, Spain, 21–23 June 2017.

103. Combéfis, S.; Schils, A. Automatic Programming Error Class Identification with Code Plagiarism-Based Clustering. In
Proceedings of the 2nd Int’l Code Hunt Workshop on Educational Software Engineering, Seattle, WA, USA, 18 November 2016;
ACM: New York, NY, USA, 2016; pp. 1–6.

104. Singh, R.; Gulwani, S.; Solar-Lezama, A. Automated Feedback Generation for Introductory Programming Assignments. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, Seattle, WA, USA,
16–19 June 2013; ACM: New York, NY, USA, 2013; pp. 15–26.

105. Juedes, D.W. Experiences in Web-Based Grading. In Proceedings of the 33rd ASEE/IEEE Frontiers in Education Conference,
Westminster, CO, USA, 5–8 November 2003.

106. Rump, A.; Fehnker, A.; Mader, A. Automated Assessment of Learning Objectives in Programming Assignments. In Proceedings
of the 17th International Conference on Intelligent Tutoring Systems, Athens, Greece, 7–11 June 2021; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 299–309.

107. del Pino, J.C.R.; Rubio-Royo, E.; Hernández-Figueroa, Z.J. A Virtual Programming Lab for Moodle with automatic assessment and
anti-plagiarism features. In Proceedings of the 2012 International Conference on e-Learning, e-Business, Enterprise Information
Systems, & e-Government, Las Vegas, NV, USA, 16–19 July 2012.

108. Choudhury, R.R.; Yin, H.; Moghadam, J.; Fox, A. AutoStyle: Toward Coding Style Feedback at Scale. In Proceedings of the 19th
ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, San Francisco, CA, USA, 26
February–2 March 2016; ACM: New York, NY, USA, 2016; pp. 21–24.

109. Joy, M.; Griffiths, N.; Boyatt, R. The BOSS Online Submission and Assessment System. J. Educ. Resour. Comput. 2005, 5, 2–es.
[CrossRef]

110. Delgado-Pérez, P.; Medina-Bulo, I. Customisable and Scalable Automated Assessment of C/C++ programming assignments.
Comput. Appl. Eng. Educ. 2020, 28, 1449–1466. [CrossRef]

111. Foxley, E.; Higgins, C.; Hegazy, T.; Symeonidis, P.; Tsintsifas, A. The CourseMaster CBA System: Improvements over Ceilidh. In
Proceedings of the 5th International Computer Assisted Assessment Conference, Loughborough, UK, 2–3 July 2001.

112. Delev, T.; Gjorgjevikj, D. E-Lab: Web Based System for Automatic Assessment of Programming Problems. In Proceedings of the
ICT Innovations 2012 Conference, Ohrid, North Macedonia, 12–15 September 2012; pp. 75–84.

113. Blumenstein, M.; Green, S.; Nguyen, A.; Muthukkumarasamy, V. An Experimental Analysis of GAME: A Generic Automated
Marking Environment. ACM SIGCSE Bull. 2004, 36, 67–71. [CrossRef]

114. Clegg, B.; Villa-Uriol, M.C.; McMinn, P.; Fraser, G. Gradeer: An Open-Source Modular Hybrid Grader. In Proceedings of the 43rd
ACM/IEEE International Conference on Software Engineering: Software Engineering Education and Training, Madrid, Spain,
25–28 May 2021.

115. Morris, D.S. Automatic Grading of Student’s Programming Assignments: An Interactive Process and Suite of Programs. In
Proceedings of the 33rd Annual Frontiers in Education, Westminster, CO, USA, 5–8 November 2003.

116. Derval, G.; Gego, A.; Reinbold, P.; Frantzen, B.; Roy, P.V. Automatic grading of programming exercises in a MOOC using
the INGInious platform. In Proceedings of the European MOOC Stakeholder Summit 2015, Mons, Belgium, 18–20 May 2015;
pp. 86–91.

117. Insa, D.; Silva, J. Semi-Automatic Assessment of Unrestrained Java Code: A Library, a DSL, and a Workbench to Assess Exams
and Exercises. In Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education,
Vilnius, Lithuania, 4–8 July 2015; ACM: New York, NY, USA, 2015; pp. 39–44.

118. Insa, D.; Silva, J. Automatic Assessment of Java Code. Comput. Lang. Syst. Struct. 2018, 53, 59–72. [CrossRef]
119. Jackson, D. A Semi-Automated Approach to Online Assessment. ACM SIGCSE Bull. 2000, 32, 164–167. [CrossRef]
120. Chen, H.M.; Chen, W.H.; Hsueh, N.L.; Lee, C.C.; Li, C.H. ProgEdu—An Automatic Assessment Platform for Programming

Courses. In Proceedings of the 2017 International Conference on Applied System Innovation, Sapporo, Japan, 13–17 May 2017;
pp. 173–176.

121. Colton, D.; Fife, L.; Winters, R.; Nilson, J.; Booth, K. Building a Computer Program Grader. Inf. Syst. Educ. J. 2005, 3, 1–16 .
122. Edwards, S.H.; Perez-Quinones, M.A. Web-CAT: Automatically Grading Programming Assignments. In Proceedings of the 13th

Annual Conference on Innovation and Technology in Computer Science Education, Madrid, Spain, 30 June–2 July 2008; ACM:
New York, NY, USA, 2008; p. 328.

123. Chen, H.M.; Nguyen, B.A.; Yan, Y.X.; Dow, C.R. Analysis of Learning Behavior in an Automated Programming Assessment
Environment: A Code Quality Perspective. IEEE Access 2020, 8, 167341–167354. [CrossRef]

http://dx.doi.org/10.1145/792548.611956
http://dx.doi.org/10.1145/1163405.1163407
http://dx.doi.org/10.1002/cae.22317
http://dx.doi.org/10.1145/1026487.1008016
http://dx.doi.org/10.1016/j.cl.2018.01.004
http://dx.doi.org/10.1145/353519.343160
http://dx.doi.org/10.1109/ACCESS.2020.3024102


Software 2022, 1 30

124. Pribela, I.; Pracner, D.; Budimac, Z. Bringing Together Manual and Automated Code Assessment. In Proceedings of the 2015 AIP
Conference 1648, Rhodes, Greece, 22–28 September 2014.

125. Edwards, S.H. Using Software Testing to Move Students From Trial-and-Error to Reflection-in-Action. In Proceedings of the 35th
SIGCSE Technical Symposium on Computer Science Education, Norfolk, VA, USA, 3–7 March 2004; ACM: New York, NY, USA,
2004; pp. 26–30.

126. Schrittwieser, S.; Katzenbeisser, S.; Kinder, J.; Merzdovnik, G.; Weippl, E. Protecting Software through Obfuscation: Can It Keep
Pace with Progress in Code Analysis. ACM Comput. Surv. 2017, 49, 1–37. [CrossRef]

127. Pettit, R.; Prather, J. Automated Assessment Tools: Too Many Cooks, not Enough Collaboration. J. Comput. Sci. Coll. 2017,
32, 113–121.

http://dx.doi.org/10.1145/2886012

	Introduction
	Motivations
	Research Questions
	Methodology
	Related Work

	Automated Code Assessment
	Code and Program Aspects
	Code Syntax
	Anti-Plagiarism
	Code Semantic
	Code Performance
	Code Quality
	Other Aspects

	Methods and Techniques
	Static Approaches
	Dynamic Approaches
	Hybrid Approaches
	Modelling
	Artificial Intelligence

	Feedback
	Status
	Mark
	Rubric
	Counterexample
	Comment
	Report
	Other Kinds of Feedback


	Automated Assessment Tools
	Features
	Tools and Systems
	Security

	Integration in the Learning Process
	Grading
	Active Learning
	Learning Behaviour
	Semi-Automated Code Assessment

	Discussions
	Feasible Kinds of Assessment
	Assessment Quality
	Challenges for Automated Code Assessment
	Human Intervention and Assessment Quality
	Cheating and Creativity
	Collaboration and Interoperability


	Conclusions
	References

