
A JavaPathfinder Extension to Analyse Human-Machine Interactions

Sébastien Combéfis∗, Dimitra Giannakopoulou†, Charles Pecheur∗ and Peter Mehlitz†
∗Computer Science and Engineering Department

ICT, Electronics and Applied Mathematics Institute
Université catholique de Louvain, Louvain-la-Neuve, Belgium
Email: {Sebastien.Combefis,Charles.Pecheur}@uclouvain.be

†NASA Ames Research Center
Moffett Field, CA 94035, USA

Email: {Dimitra.Giannakopoulou,Peter.C.Mehlitz}@nasa.gov

Abstract—We present jpf-hmi, a Java Pathfinder (JPF)
extension that supports the description and analysis of human
machine interaction (HMI) systems. The extension is built on
top of jpf-statechart, but differentiates between events
in terms of commands, observations and internal actions, as
it is typical in the HMI domain. jpf-hmi implements two
algorithms for generating concise system models for human
operators. It also supports the detection of several types of
HMI-specific anomalies known as “automation surprises”, such
as non full-control determinism and mode confusion. These
capabilities are provided in addition to the existing more
generic property verification that is supported by JPF, and
which can also be applied to HMI systems.

Keywords-JavaPathfinder extension; human-machine interac-
tion; formal methods; modelling; bisimulation; learning

I. INTRODUCTION

Interaction between human operators and automated
systems is getting increasingly complex and error-prone,
resulting in many accidents or system failures due to au-
tomation surprises [1]–[3]. Formal methods can be useful for
performing rigorous analysis of human-machine interactions.

Recently, Heymann and Degani [4] developed a method to
automatically generate so called “mental models”, which are
minimal abstractions of HMI systems that enable operators
to control such systems solely based on knowledge of the
corresponding mental model. Their approach was later studied
more extensively resulting in two algorithms for automatically
generating such abstraction: the first is based on reduction [5]
and the second on learning [6].

This paper presents the jpf-hmi prototype, an extension
of the Java Pathfinder model checker (JPF) [7] that provides
the capability to analyze human-machine interactions based
on techniques developed in our previous work [5], [6], [8].
The tool allows the designer to input HMI models, which
are analyzed by jpf-hmi.

The remainder of the paper is organized as follows.
Section II states the necessary background to understand
the analysis techniques. Section III presents the extension,
its architecture and an example illustrating how to use it.
Finally, the last section concludes the paper by presenting
future work.

II. INTERACTION MODELLING AND ANALYSIS

This section provides a quick overview of the background
necessary to understand the tool presented in this paper. The
detailed formalization and algorithm description is presented
in [5], [6], [8]. We use a simple running example of a
countdown system. The countdown starts at 4 with the
_start() command. The value then decreases by steps
of 1, with an observable _tick() action. Finally, the
user can reset the countdown, any time after the first tick,
with the _reset() command. Figure 1 shows a graphical
representation of the system model. A transition labelled
with [cond] act

upd means that the action act can be triggered if
the condition cond is satisfied and triggering the action will
result in the upd update. Update is optional and no update
is denoted with a dash (—).

idle running
int val

[true] start()
val = 4

[val<4] reset()
—

[val>0] tick()
val--

Figure 1. The countdown example: a high-level description.

A. Models

The approach used is based on models: the system model
represents the behaviour of the system and the mental model
is an abstraction of the system for the human operator.
Those models are mathematically represented with enriched
labelled transition systems (LTS) called HMI LTS, that are
essentially graphs whose edges are labelled with actions.
There are three kind of actions: commands are triggered by
the user on the system, observations are actions autonomously
triggered by the system but that the user can observe and
finally internal actions are neither controlled nor observed
by the user. Figure 2 shows the corresponding HMI LTS for
the countdown example, where _start() and _reset()

are considered as commands (solid lines) and _tick() is
considered as an observation (dashed lines). Moreover, states
of the models may be partitioned into modes in which

case each state is associated with a mode. Such additional
information is useful to deal with mode confusion.

idle running[val=4]

running[val=3]

running[val=2]

running[val=1]

running[val=0]

start()

tick()

tick()

tick()

tick()

reset()

reset()

reset()

reset()

Figure 2. The corresponding HMI LTS of the countdown example.

B. Full-control property

The full-control property [5] ensures that at any point
during system execution, the operator has sufficient knowl-
edge about the system state to choose the proper control
commands. Intuitively, it says that at any time during the
interaction between the user and the system, the commands
that are possible on the system must be known exactly by the
operator and he must be aware of at least all the observations
that the system may produce.

In other words, a mental model satisfying the property
ensures that after any sequence of actions that can be executed
on the system and on the mental models, the set of available
commands on both models are the same, and the set of
available observations according to the mental model is a
superset of those available on the system model.

Figure 3 shows the minimal full-control mental model for
the countdown example.

{idle} {running[val=4]}

{running[val=3], running[val=2], running[val=1], running[val=0]}

start()

tick()reset()

tick()

Figure 3. Minimal mental model of the countdown example (obtained
with the reduction-based technique).

C. Mental model generation

Two algorithms, described in [5], [6], aim at generating
automatically a minimal mental mental for a given system
model. The first one is based on a bisimulation-based relation
between the states of the system. Related states exhibit the

same behaviour according to the standpoint of the operator
and can therefore be merged together in the mental model.
The second technique is based on a learning algorithm that
iteratively builds mental model guesses, based on a teacher
that is used to answer whether proposed execution sequences
must, may or cannot be part of the mental model.

Whenever it is not possible to generate such a mental
model for a given system, the algorithms provide diagnostic
information in terms of a counterexample that illustrates
problematic interactions which can be used by the designer to
identify potential issues in the system model. Such situations
occur when the system model is not full-control deterministic,
meaning that the system can non-deterministically reach
states that do not have the same set of possible commands.
As a result, an operator would not be able to control such a
system appropriately.

III. THE JPF-HMI EXTENSION

The jpf-hmi project uses the jpf-statechart frame-
work [9], which represents hierarchical state machines as
nested State class structures that can be executed and hence
model checked by JPF.

It is important to understand the different models that
are implicated at different levels. The first level is the one
used in the statechart [10] model of the system (Figure 1
shows the two states of the countdown example). That
statechart is translated into a Java program that is usable by
the jpf-statechart extension. The jpf-hmi extension
performs this translation for a specified statechart format.
Each state of the statechart corresponds to a subclass of the
State class provided with the jpf-statechart extension.
That Java program is then executed by the JPF model-
checker which retains the states of the execution, that is,
states of the JVM. Finally, the SC2LTS tool that is presented
hereafter computes the corresponding HMI LTS whose states
correspond more or less to the JVM states (minor abstractions
notwithstanding).

The jpf-hmi extension consists of a combination of
different parts illustrated on Figure 4. The models to be
analyzed can be provided in three different ways:

• An XMI file describing a statechart that can be exported
from usual modelling tools like ArgoUML for example.
The XMI file is parsed and is translated into a Java
statechart program (XMIParser);

• A Java program following the jpf-statechart exten-
sion conventions;

• A txt file containing the explicit description of the
HMI LTS. Such a file can be generated by the jpf-hmi
extension (LTSLoader).

Some of the analysis algorithms that are provided in the
extension require the fully expanded HMI LTS to work. The
Java statechart is translated into an HMI LTS thanks to JPF
and the jpf-statechart extension (SC2LTS).

Three types of analysis can be performed on HMI LTSs:
• The FCCheck algorithm checks whether a given mental

model ensures full-control of a system model by an
operator. If it is not the case, an execution trace is
provided as a counterexample;

• The Bisim algorithm generates a minimal full-control
mental model for a given system model, using the
reduction-based technique. If such a mental model
cannot be computed, then some diagnostic information
is produced;

• The Learning algorithm does the same as the Bisim

algorithm but uses the learning-based technique. In
addition, when a mental model cannot be computed, it
produces an execution trace that illustrates the problem
as a counterexample.

.xmi XMIParser .java

JPF

SC2LTS

.txt LTSLoader LTSLoader .txtLTS

FCCheck

true/false

Bisim Learning

LTS LTS

Figure 4. Overview of the jpf-hmi extension.

A. Describing the behaviour of models

The jpf-hmi extension includes an abstract Model class
that represents an HMI LTS. Concrete input models are
provided by means of extending this Model class, which
require definition of the following class features:

• The public List<Action> getActions() method
must be defined and returns the alphabet of the LTS
with the partition into commands and observations;

• An inner class named Behaviour, which extends the
State class, describes the behaviour of the model
as a statechart according to the convention of the
jpf-statechart framework.

The class may optionally contains a public

List<String> getModes() method which returns
the list of modes of the system. Figure 5 shows the Java
program for the countdown example. There are three
possible actions: the user can press the _start() button
to activate the countdown (command), he can observe
a _tick() whenever the countdown is running and the
remaining time is decreased (observation) and he can reset
the countdown with the _reset() button (command).

B. Performing analyses

To perform analyses within the jpf-hmi extension, the
most convenient way is to use the RunHMIAnalyzer JPF
shell which is configured with various options. The default

p u b l i c c l a s s CountDown ex tends Model {
@Override
p u b l i c List<Action> getActions() {

List<Action> actions = new ArrayList<Action>();
actions.addAll (Arrays.asList (

new Action ("_start()", COMMAND),
new Action ("_reset()", COMMAND),
new Action ("_tick()", OBSERVATION)

));
re turn actions;

}

p u b l i c s t a t i c c l a s s Behaviour ex tends State {
p r i v a t e s t a t i c f i n a l i n t MAX = 4;

p u b l i c c l a s s Idle ex tends State {
p u b l i c vo id _start() {

running.val = MAX;
setNextState (running);

}
} Idle idle = makeInitial (new Idle());

p u b l i c c l a s s Running ex tends State {
i n t val = 0;

p u b l i c vo id _tick() {
i f (val > 0) {

val--;
setNextState (t h i s);

}
}

p u b l i c vo id _reset() {
i f (val < MAX) {

setNextState (idle);
}

}
} Running running = new Running();

}
}

Figure 5. Java program of the countdown example’s system model.

operation of the RunHMIAnalyzer tool is to generate the
HMI LTS for the provided system model. Figure 6 shows
the JPF application property configuration file that is used
to generate the HMI LTS for the countdown example. The
HMI LTS is computed and saved in two formats: a .lts

file with the explicit description of the LTS and a .dot file
with the graph of the system.

@using jpf-statechart

shell=gov.nasa.jpf.hmi.tools.RunHMIAnalyzer
+jpf-hmi.native_classpath=/tmp;

hmi.system=Countdown
hmi.system_output=/tmp/Countdown-system

Figure 6. JPF configuration file to perform analyses of the countdown
example with the jpf-hmi extension.

Figure 2 shows the graph that is generated by the SC2LTS

tool. The name of each generated state is the following: the
name of the corresponding statechart state, together with all
the instance variables with their corresponding values.

In order to generate minimal mental models, it suffices to
define the hmi.algo option to reduction in order to use
the reduction-based algorithm and to learning for using

the learning-based one. Figure 3 shows the mental model
obtained with the reduction-based technique.

The configuration file to obtain this result is the same as
the one of Figure 6 with two additional lines:
hmi.algo=reduction
hmi.mental_output=Countdown-mental

As discussed earlier, whenever it is not possible to compute
a full-control mental model, the jpf-hmi extension provides
a problematic interaction. For example, let us assume that we
add one transition to the countdown model, with the internal
unobservable action τ from state running[val=0] to idle,
corresponding to an automatic reset. With this modification,
the model is no longer full-control deterministic. As a result,
it is not possible to get a full-control mental model and the
jpf-hmi extension, when run with the learning algorithm,
reports the following problematic interaction:
System model is not full-control deterministic
CEX: [_start(), _tick(), _tick(), _tick(), _tick()]

Indeed after executing the above sequence on the system,
it is possible to reach two different states (running[val=0]
and idle) which do not have the same set of enabled
commands ({_reset()} and {_start()}).

In order to analyse mode confusion issues, a mode must be
associated to the states of the system. That association is done
through the @Mode annotation on the classes representing
states. If an issue occurs while computing a minimal mental
model, and that issue is due to a mode, the reported error will
clearly indicate a mode confusion issue. The way modes are
handled in our framework is that loop transitions are added
to all the states of the HMI LTS, labelled with commands
corresponding to modes as discussed in [6].

C. Model abstraction
Realistic HMI models are often prohibitively large. Ab-

straction is therefore a crucial capability to improve both
automatic analysis and readability for human operators.
The jpf-hmi project currently supports three abstraction
mechanisms that can be used to reduce the number of system
states.

The first mechanism uses FilterField annotations for
variable values that should be ignored when JPF matches
program states, which constitutes a static filter. The sec-
ond mechanism uses dedicated Abstraction objects to
dynamically map ranges of concrete field values into abstract
ones that are passed on the JPF matcher, which usually
represents an under-approximation to reduce the number of
explored system states. The third mechanism is to apply the
abstraction a posteriori on the full HMI LTS, renaming states
with the abstract values and merging them together. The latter
results in an over-approximation of the system behavior. The
drawback is that the full HMI LTS needs to first be created,
which may not be possible for very large systems. On the
other hand, it enables the simplification of system behavior
for the human operator.

To implement dynamic runtime abstraction, the user has to
provide concrete subclasses of JPF’s AbstractionAdapter
type, and mark the to-be-abstracted classes with
@Abstract("<qualified-abstraction-classname>")

annotations. Going back to the countdown example, one
possible abstraction would be to not care about the exact
value of the countdown’s counter whenever it is running, but
to only record whether the value is positive or equal to zero.

Figure 7 shows the class defining the abstraction. The
getAbstractValue method takes as input the concrete
value of the variable and returns the abstract value. The
getName method takes a concrete value as input and returns a
string representation for the abstract value. That latter method
is optional and if it is not specified, the string representation
will simply be the abstract value.

p u b l i c s t a t i c c l a s s ValAbs1 ex tends AbstractionAdapter {
p u b l i c i n t getAbstractValue (i n t v) {

i f (v > 0) {
re turn 0;

} e l s e i f (v == 0) {
re turn 1;

}
re turn -1;

}

p u b l i c String getName (i n t v) {
i n t i = getAbstractValue (v);
re turn i == 0 ? "(>0)" : "(=0)";

}
}

Figure 7. Abstraction for the system model of the Countdown example.

To get an abstract version of the Countdown exam-
ple, the first step is to annotate the val variable with
@Abstract("ValAbs1"). The second step is to activate
the abstraction mechanism through the configuration file by
adding two lines to it:
vm.serializer. c l a s s=

.jvm.serialize.DynamicAbstractionSerializer
das.classes.include=CountDown$Behaviour*

Figure 8 shows the LTS that is generated by the
SC2LTS tool. The LTS is reduced to a two-state
LTS which is an under-approximation of the concrete
LTS (Figure 2). The running[val=4] state has been
abstracted into running[val=(>0)]. The next state
which is running[val=3] also corresponds to the
running[val=(>0)] abstract state and the exploration by
JPF is thus ended.

idle running[val=(>0)]
start()

tick()

Figure 8. Under-abstraction of the countdown example, with the
jpf-core abstraction built-in mechanism.

As discussed above, jpf-hmi also supports the generation
of over-approximating system abstractions. For our example,

this could be achieved during the labelling of the states
by the SC2LTS tool, through the getName method of the
abstraction class. Figure 9 shows the abstraction class.

p u b l i c s t a t i c c l a s s ValAbs2 ex tends AbstractionAdapter {
p u b l i c i n t getAbstractValue (i n t v) {

re turn v;
}

p u b l i c String getName (i n t v) {
re turn v > 0 ? "(>0)" : "(=0)";

}
}

Figure 9. Second abstraction for the system model of the Countdown
example.

Figure 10 shows the generated LTS. As already discussed,
the disadvantage of the latter approach is that the concrete
model will be completely explored by JPF, which is not the
case with the other technique.

idle running[val=(>0)]

running[val=(=0)]

start()

reset()

tick()

tick()

reset()

Figure 10. Over-abstraction of the countdown example, with the SC2LTS
abstraction mechanism.

IV. CONCLUSION

This paper presented jpf-hmi, an extension of JPF
that aimed at the analysis of systems where the focus is
on interactions of human operators with the system. The
modelling part is based on the jpf-statechart extension
and the supported analysis capabilities implement algorithms
discussed in previous work [5], [6], [8] on mental model
generation.

The extension is currently a prototype for performing
basic HMI system description and analysis. It is under
active development, and several improvements are planned.
In the future, the extension will use the JPF model-checking
capabilities in order to add support for other standard HMI
properties that can be expressed as model-checking problems
(for example as safety properties). Moreover, we would
like to extend and enhance the abstraction capabilities; for
example, abstraction classes could be generated automatically
in some cases. We may also try to provide some support for
abstraction refinement. Finally, we plan to improve the XMI
to JPF statechart translation in order to handle statechart
models developed with tools like ArgoUML, as well as
to connect the extension to HMI modelling tools such as
ADEPT [11]. This will give us the opportunity to obtain
significant case studies for our research in this domain.

REFERENCES

[1] A. Degani, Taming HAL: Designing Interfaces Beyond 2001.
Palgrave Macmillan, Jan. 2004.

[2] N. G. Leveson and C. S. Turner, “Investigation of the therac-
25 accidents,” IEEE Computer, vol. 26, no. 7, pp. 18–41, Jul.
1993.

[3] E. Palmer, “Oops, it didn’t arm. — a case study of two
automation surprises,” in Proceedings of the 8th International
Symposium on Aviation Psychology, 1996, pp. 227–232.

[4] M. Heymann and A. Degani, “Formal analysis and automatic
generation of user interfaces: Approach, methodology, and
an algorithm,” Human Factors: The Journal of the Human
Factors and Ergonomics Society, vol. 49, no. 2, pp. 311–330,
Apr. 2007.

[5] S. Combéfis and C. Pecheur, “A bisimulation-based approach
to the analysis of human-computer interaction,” in Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS’09), G. Calvary, T. N. Graham,
and P. Gray, Eds. New York, NY, USA: ACM, 2009, pp.
101–110.

[6] S. Combéfis, D. Giannakopoulou, C. Pecheur, and M. S.
Feary, “Learning system abstractions for human operators,” in
Proceedings of the 2011 International Workshop on Machine
Learning Technologies in Software Engineering (MALETS
2011), Nov. 2011.

[7] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” in Proceedings of the IEEE International
Conference on Automated Software Engineering, 2000, pp.
3–12.

[8] S. Combéfis, D. Giannakopoulou, C. Pecheur, and M. S.
Feary, “A formal framework for design and analysis of human-
machine interaction,” in Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Oct. 2011.

[9] P. C. Mehlitz, “Trust your model - verifying aerospace system
models with JavaPathfinder,” in Aerospace Conference, 2008
IEEE, Mar. 2008, pp. 1–11.

[10] D. Harel, “Statecharts: A visual formalism for complex
systems,” Science of Computer Programming, vol. 8, pp. 231–
274, Jun. 1987.

[11] M. S. Feary, “A toolset for supporting iterative human –
automation interaction in design,” NASA Ames Research
Center, Tech. Rep. 20100012861, Mar. 2010.

