
UNIVERSITE CATHOLIQUE DE LOUVAIN
ECOLE POLYTECHNIQUE DE LOUVAIN

Glass Cat – a tool for
interactive visualization of the execution
of Oz programs in the Pythia platform

Pierre Bouilliez

Thesis submitted for the grade of master degree
in computer science and engineering in networking and security.

Supervisor: Prof. Peter Van Roy
Co-supervisor: Dr Ir. Sébastien Combéfis
Reader: Dr Ir. Virginie Van den Schrieck

Louvain-la-Neuve

Academic year 2013-2014

“If you can dream it, you can do it. Always remember that
this whole thing was started with a dream and a mouse.”

— Walt Disney

Acknowledgments

A master’s thesis is not only the biggest project we have to lead during our
curriculum. It is also the culmination of our years at University. Therefore, this
work is the product of the experience acquired for many years. This is it . . . THE
experience, what we get from sharing the knowledge that forges our mind and
makes us thrive. This is why I want to thanks a lot of people for what we have
shared, but I will limit myself to those who have a link with this thesis.

First, I wish to express all my sincere gratitude to Prof. Peter Van Roy for
his dedication to Oz, always making it writing another story. Moreover, he was
always there to answer to my questions despite a very busy schedule.

I would like to give a special thank to Dr Ir. Sébastien Combéfis for all
the wonderful experiences he shared with me along these years and many more
to come. He was undoubtedly my mentor during my years at University, the one
who supported me even when it was not easy and made me discover the new era of
education via the Internet. Maybe there will be more tasty things in the future. . .

Then, Dr Ir. Virginie Van den Schrieck for the time she will take reading
this thesis.

And last but not least, to all my friends who unwind and encourage me
throughout this year. Especially Guillaume Simons whom I have spent a lot of
time this year, working on our respective thesis, sharing our experience.

Pierre Bouilliez
Louvain-la-Neuve, June 2014.

i

ii

Abstract

Nowadays, education is changing thanks to the Internet. The number of Massive
Open Online Courses (MOOCs) increases every year. It opens the doors to develop
new tools to help students learning. Moreover, learning programming requires first
to understand precisely how the program works. The semantics of a programming
language defines the meaning of the language with a mathematical representation.
Semantics is used to get a precise and formal understanding of programs.

Ultimately, learning requires practice and students must have a way to check
their answers. Currently, many softwares with automatic feedbacks are being
developed and made available online. Above that, visualization programs can bring
added-value to facilitate the learning of complex concepts. Furthermore, many
researches suggest that only using “view-only” programs to learn is not enough,
and prone the implication of students with the code.

In addition, a programming language called Oz offers an opportunity to reason
about the correctness of a program. As it covers three of the most important
programming paradigms, this language is learned by second-year students in
engineering at the Université catholique de Louvain. This year, the first version of
this course was also available as a MOOC.

This master’s thesis proposes Glass Cat, a web-based tool for visualizing the
execution of Oz programs. Students can write their own codes and see how
semantics is processed at each step.

Glass Cat can interpret and display the semantics of 50% of the global kernel
language of Oz. It corresponds to the content of the first course given with this
language. This tool can also be integrated into the INGI Programming Training
Server Pythia which offers exercises with smart feedbacks to students.

iii

iv

CONTENTS

Contents

1 Introduction 1
1.1 Objectives . 1
1.2 Structure of this thesis . 2
1.3 Why Glass Cat? . 3

2 Oz 5
2.1 The kernel language of Oz . 5

2.1.1 Browser . 6
2.1.2 The declarative model . 6
2.1.3 The declarative model with explicit state 9
2.1.4 The data-driven concurrent model 10

2.2 The semantics of Oz . 11
2.2.1 The abstract machine . 12
2.2.2 Operations . 12
2.2.3 Declarative variables vs. dataflow variables 16
2.2.4 Examples of execution . 16
2.2.5 Garbage Collector . 19

3 Interpreter 21
3.1 Concepts of parsing a language . 21

3.1.1 Define grammars . 22
3.1.2 Lexical analysis (tokenizing) 23
3.1.3 Syntactic analysis . 23

3.2 Parser generators . 25
3.2.1 Bison . 25
3.2.2 Jison . 25

v

CONTENTS

3.2.3 PEG.js . 25
3.2.4 Comparison . 26

3.3 Work with Jison . 26
3.3.1 Lexical analysis . 27
3.3.2 Precedence . 27
3.3.3 Define a new rule . 28

4 Visual Programming 31
4.1 Definition . 31
4.2 A reference model for visualization 32
4.3 Classification . 33
4.4 Visual representation in education 33

4.4.1 What to see? . 33
4.4.2 Improve the student’s engagement 34

4.5 A brief presentation of some visual programs 34
4.5.1 JIVE . 34
4.5.2 Memview . 35
4.5.3 PlanAni . 37
4.5.4 CSmart . 37
4.5.5 ViLLE . 37
4.5.6 Python online tutor . 37
4.5.7 Jeliot 3 . 37
4.5.8 Summary . 40

4.6 Design Choices . 40
4.6.1 Goals . 40
4.6.2 Interaction . 41
4.6.3 Scalability . 41

5 Pythia 45
5.1 The Pyhia platform . 45
5.2 Pythia and the edX platform . 46
5.3 Integration of Glass Cat . 47

6 Implementation 49
6.1 Structure of the program . 49
6.2 Back-end . 50

vi

CONTENTS

6.2.1 Parser . 50
6.2.2 Parse tree nodes . 51
6.2.3 Semantics . 52
6.2.4 Procedures . 54

6.3 Front-end . 55

7 Evaluation 57
7.1 Subset of Oz . 57
7.2 Correctness . 58
7.3 Execution time . 59
7.4 Optimizations . 61

8 Conclusions 63
8.1 Perspectives and limitations . 64
8.2 Open questions . 65

Appendices 67

A Developers 69
A.1 Installation of Jison . 69
A.2 Grammar . 69
A.3 How to add a new rule? . 78

A.3.1 oz.jison . 78
A.3.2 ast_nodes.js . 80
A.3.3 Working with procedures 81

A.4 How to add semantics? . 82
A.4.1 Working with procedures 82

A.5 Add tests . 83

B Users 85
B.1 A brief tour . 85
B.2 What can you do? . 86

Bibliography 92

vii

Chapter 1

Introduction

The Internet ! What a powerful thing with more than thirty years of experiences,
managing lives of billions of people, storing billions of websites. One human lifetime
is not enough to visit them all. The internet has become probably the most brilliant
brain on earth, connecting people in the world. However there is no precise platform
to share this knowledge.

Learners ! Since you were in your mother’s womb, you have never stopped
learning. We are all learners, but sometimes we do not know where to find answers
to our questions. We are going to school to learn new things, to find explanations.
Knowledge has to be spread.

Nowadays, these two entities finally met each other and we can find courses on
the Internet. Universities are no longer merely geographical places but are accessible
from everywhere, to everybody. This master’s thesis perfectly fits this belief and
proposes a tool to help people understanding how a programming language works.

More specifically, we developed a website to be integrated into the Pythia
platform [CLCdSM12], as part of a MOOC (Massive Open Online Course) taught
at the Université catholique de Louvain by Prof. Peter Van Roy [VR11]. During
this course, students learn a programming language called Oz. This language covers
three of the most important programming paradigms and is therefore interesting to
learn useful concepts. Moreover, Oz defines tools to reason about both complexity
and correctness of a program.

The platform developed in this master’s thesis interprets an elementary part
of Oz (the kernel language) and shows how execution steps are processed in the
memory. We decided to call it Glass Cat.

1.1 Objectives

The main objective of this master’s thesis is to develop a tool for the interactive
visualization of Oz programs to be integrated into the Pythia platform. We can

1

1.2. STRUCTURE OF THIS THESIS

define a few subgoals to achieve, in order to complete the main objective:

Goal 1: Interpret the subset of the kernel language of Oz covered by the MOOC.

Goal 2: Display the semantics of the code written by the user.

Goal 3: Be interesting for a student.

Goal 4: Integrated into Pythia.

1.2 Structure of this thesis

After presenting the context and the objectives we wish to achieve, the remainder
of this master’s thesis is organized as follows:

Chapter 2 – This chapter presents Oz, the programming language that Glass
Cat interprets. It does not explain the complete language but only a part of the
kernel language. We present some operations that can be done and how to code
them. Afterwards we show the semantics which is used to define the meaning of the
kernel language through the execution of its statements by an abstract machine.

Chapter 3 – In order to fulfil Goals 1 and 4, we have to interpret Oz inside
a webpage. Therefore, this chapter introduces concepts related to the parsing of
a programming language. We see how the parser can understand the code and
manipulate it correctly. We compare some parser generators and choose the one
that fits best with our objectives.

Chapter 4 – This chapter is about the design of the User Interface (UI) of
Glass Cat in order to satisfy Goals 2 and 3. First, we define the concept of
visual programming and how it can be helpful for students, i.e. improving their
engagement. This definition leads us into a short presentation of some visual
programs. Later, we can finally present our UI design choices for Glass Cat.

Chapter 5 – As Glass Cat has to be incorporated into Pythia, this chapter
presents briefly this platform. We will see how Glass Cat can bring concrete
added-value to this educational website.

Chapter 6 – This chapter presents the implementation of Glass Cat. We look
at how we made it come true. We decomposed this chapter in two sections. The
first one is about the back-end which encloses everything the user does not see.
The second section is about the front-end and contains what the user can see. This
chapter gives a global description of how the Glass Cat platform works. A more
complete description is given in Appendix A.

2

1.3. WHY GLASS CAT?

Chapter 7 – Finally, we evaluate Glass Cat. We see how many items of the
global kernel language of Oz are implemented and if it can correctly compute the
semantics for numerous tests. Moreover, we concisely inspect its speed and its
memory consumption. We also provide a brief explanation of optimizations that
can make it faster.

Chapter 8 – This concluding chapter sums up what we have learned in this
master’s thesis and gives perspectives for the future.

1.3 Why Glass Cat?

Finding a name for the platform developed in this master’s thesis was difficult.
We could have chosen a long and explicit name in order to describe what it will
talk about at first sight. Nevertheless, such a name is not useful and does not last
long. Also, if we delve more deeply in the origin of Glass Cat, we can find a nice
metaphor.

As this thesis is linked to the Oz programming language, we looked at names
of characters from books written by L. Frank Baum [Bau13]. One day, a magician,
Dr Pipt wanted to test his powder of life. So he threw it on a cat made of glass.
Since this day, Glass Cat is alive with a transparent body that reveals her heart
and her brain [Wik13].

This name jumped out at me because this master’s thesis wants to make the
heart of Oz visible to the students while Glass Cat has a transparent body.

3

1.3. WHY GLASS CAT?

4

Chapter 2

Oz

“The most important thing in the programming language is
the name. A language will not succeed without a good

name. I have recently invented a very good name and now I
am looking for a suitable language.”

— Donald Knuth

Oz is a multiparadigm programming language, which was first developed by Gert
Smolka and his students in 1999 [VR09]. It was a good starting point to make the
network distribution transparent. Nowadays, many new ideas have already come to
add innovative functionalities to Oz, and its Mozart compiler currently implements
Oz 3.

Given that Oz covers three of the most important programming paradigms
(functional, object-oriented, and dataflow concurrent programming), it was agreed
in 1999 by Peter Van Roy and Seif Haridi to introduce it in universities. Therefore,
since 2003, engineering students at the Université catholique de Louvain study
this language during their second-year bachelor [VR11]. Moreover, Oz provides a
formal semantics of the kernel language which can be found in [VRH04].

This chapter gives a brief explanation of Oz. In particular, we focus on the
kernel language of Oz in order to meet Goal 1. This kernel language defines in a
simple mathematical structure what the program does. In this chapter, you will
not find high-level codes like the ones you could use in Mozart.

2.1 The kernel language of Oz

This section provides a brief introduction to the kernel language of Oz.

5

2.1. THE KERNEL LANGUAGE OF OZ

2.1.1 Browser

As a first introduction to Oz, it is mandatory to talk about the browser which is a
special window. The browser is called with a one-argument function Browse. Its
unique argument is what the browser has to display. Listing 2.1 shows an example
of how to call the browser to display the number 42.

1 { Browse 42}

Listing 2.1. Use of the browser in Oz.

2.1.2 The declarative model

The basic concept of the declarative model is “if a program works today, then it
will work tomorrow”, i.e. the values of variables do not change and functions do
not change their behaviour [VR12].

Table 2.1 shows the declarative kernel language, where 〈x〉 is an identifier and
〈v〉 is a value (number, record, procedure).

〈s〉 ::= skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1 = 〈x〉2 Variable-variable binding
| 〈x〉 = 〈v〉2 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| {〈x〉 〈y〉1 ... 〈y〉n} Procedure application

Table 2.1. The declarative kernel language (from [VRH04]).

Let us define more precisely some of these statements.

Identifiers

Identifiers, also referred to as variable identifiers, are textual references used to
store values in memory.

First, the identifier has to be declared within the keywords local 〈id〉 in where
〈id〉 is the name of the identifier we want to create. Then, we can assign a value
to this identifier (a number, an expression. . .) with 〈id〉=〈value〉 to store it in
the memory. This identifier will be available as long as the end keyword is not
encountered and its value cannot be changed. A typical example of an identifier is:

6

2.1. THE KERNEL LANGUAGE OF OZ

1 local X in
2 X = 3
3 end

Listing 2.2. Declaration and use of an identifier in Oz.

We can notice that Oz is dynamically typed, i.e. variables do not have to be
declared with a type such as in Java. All variable types are known at compilation
time.

The if statement

The if statement is used to evaluate an activation condition and performs some
statements if the condition is true and other statements if it is false. In Oz, it is
written:

if 〈x〉 then 〈s〉1 else 〈s〉2 end

Listing 2.3 gives an implementation of an if-then-else statement.

1 local Y in
2 local X in
3 X = (4==4)
4 if X then
5 Y = 3
6 else
7 Y = 5
8 end
9 end

10 end

Listing 2.3. The if-then-else statement in Oz.

Records

Sometimes, dealing with a single value is not sufficient, so we want to treat data
structures. These data structures are called records and start with a label followed
by a set of pairs of features and variable identifiers. Examples of records are
person(age:X1 name:X2), person(1:X1 2:X2), ’|’(1:H 2:T), ’#’(1:H 2:T).
In the kernel language, there is no tuples nor lists as they can both be imple-
mented with records.

Moreover, you can access the variable identifier in the record simply with the
identifier which stores the record followed by a point and the name of the feature
you want to access. Listing 2.4 gives an example of how a record can be created
and used.

7

2.1. THE KERNEL LANGUAGE OF OZ

1 local Y in
2 local A in
3 local B in
4 A = 3
5 B = ’M’
6 Y = person (age:A sex:B)
7 { Browse Y.1}
8 end
9 end

10 end

Listing 2.4. Use of a record in Oz.

Case statement

Another way to check a condition is done with a pattern matching:

case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end

If 〈x〉 matches 〈pattern〉 then, we will go through the statement 〈s〉1 that follows.
Otherwise, we go to 〈s〉2.

This is a very impressive concept, very often used with records as it can decom-
pose them according to the pattern 〈literal〉(〈feature〉1:〈x〉1 . . . 〈feature〉n:〈x〉n).
Moreover, these extra local variables are created and bound respectively to each
of the variable identifier of the record. Listing 2.5 shows an example of a pattern
matching on a record. Identifier H is linked to the identifier which is at feature 1,
i.e. A, and T is bound to the variable B.

1 local Y in
2 local A in
3 local B in
4 A = 3
5 B = nil
6 Y=’|’(1:A 2:B)
7 case Y of ’|’(1:H 2:T) then
8 local X2 in
9 X2=H

10 end
11 else
12 local X4 in
13 X4 = 4
14 end
15 end
16 end
17 end
18 end

Listing 2.5. Case statement with a record in Oz.

8

2.1. THE KERNEL LANGUAGE OF OZ

Procedure

A more complex construction is the one which gives us the opportunity to make
generic codes. Procedures are processes defined by the following statement:

P = proc{$ X Y} 〈s〉 end

where P is the name given to the procedure. The $ means that the procedure value
is anonymous, i.e. created without being bound to an identifier. X and Y are the
parameters of this procedure.

Procedures can take arguments which can be already bound to a value as well
as unbound variables that will be linked to an output value (written with ? as
prefix). It implies that a procedure can have more than one output value.

Listing 2.10 shows an example of the definition and use of a procedure. This
code defines a new procedure Sum to make the sum of two values and returns it
via the unbound identifier Z. This procedure is called with {Sum X Y Z} at line 10.
The next line displays the value of this sum which is 7.

1 local Sum in
2 Sum=proc{$ X Y ?Z}
3 Z = X+Y
4 end
5 local X in
6 local Y in
7 local Z in
8 X = 3
9 Y = 4

10 {Sum X Y Z}
11 { Browse Z}
12 end
13 end
14 end
15 end

Listing 2.6. Definition and use of a procedure in Oz.

Attentive readers may have observed that we have already used procedures in
this chapter. In fact, Browse is a procedure as it respects this notation.

2.1.3 The declarative model with explicit state

With the explicit state, we can keep a reference to the same identifier and change
its value without changing its name. In Oz, what is called in other languages a
variable is defined as a memory cell. Table 2.2 gives the declarative kernel with
explicit state.

9

2.1. THE KERNEL LANGUAGE OF OZ

〈s〉 ::= skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1 = 〈x〉2 Variable-variable binding
| 〈x〉 = 〈v〉2 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| {〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| {NewCell 〈x〉 〈y〉} Cell creation

Table 2.2. The declarative kernel language with explicit state (from [VRH04]).

Cells

First, we can create a new cell with the procedure NewCell with the initial value
as a parameter. Then, the assignment operation := puts a new value in the cell.
Furthermore, the access operation @ gets the current value stored in the cell.

Listing 2.7 shows an example of how a cell can be used. This short program
browses the value of the cell Y whose value is initially 0 at line 4, then 3 at the
next line. So line 6, shows 3.

1 local Y in
2 local X in
3 X = 0
4 Y = { NewCell X}
5 Y := 3
6 { Browse @Y}
7 end
8 end

Listing 2.7. Use of a cell in Oz.

2.1.4 The data-driven concurrent model

In the declarative computation model, there is just one statement that can be
executed over a single-assignment store, i.e. it is sequential. The data-driven
concurrent model allows more than one statement to reference the same store. This
makes all the statements to be executed roughly “at the same time”. Table 2.3
gives the data-driven concurrent kernel language where the new concept is the
thread statement.

Threads

With the thread statement, we can make executions taking place at the same
time. A thread can be created around another statement with the keywords
thread 〈s〉 end.

10

2.2. THE SEMANTICS OF OZ

〈s〉 ::= skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1 = 〈x〉2 Variable-variable binding
| 〈x〉 = 〈v〉2 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| {〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation

Table 2.3. The data-driven concurrent kernel language (from [VRH04]).

Listing 2.8 shows an example of how it can be used. The thread at line 5
works in parallel of the main thread (the one of the program). So, we can wonder,
what is displayed in the browser? We can think that the first call to the Browse
procedure will be the first to be displayed, but in fact, it can either be 111 or 222.

1 local B in
2 local C in
3 B = 111
4 C = 222
5 thread { Browse B} end
6 { Browse C}
7 end
8 end

Listing 2.8. Use of threads in Oz.

2.2 The semantics of Oz

The semantics of the kernel language let the programmer reason about both
complexity and correctness of a program. There are four widely used approaches
to language semantics described in [VRH04].

In this work, we only focus on the operational semantics. This approach defines
the meaning of the kernel language through the execution of its statements by an
abstract machine. First, we define the basic concepts of this kind of machine. Then,
we show all the operations that can be performed on the semantics. Afterwards,
an example illustrates the steps of the execution of a program. Finally, we want
to ensure that unused values are no more in the memory after a certain time.
Therefore, we introduce the garbage collector to perform automatic reclaiming.

11

2.2. THE SEMANTICS OF OZ

2.2.1 The abstract machine

In order to represent execution states, we need the following concepts:

• A stack of semantic statements ST : all the semantic statements to be
evaluated.

• A store: a set of stored variables. There are two kinds of store (1) a single-
assignment store σ for the declarative model (2) a mutable store µ for the
declarative model with explicit state, i.e. cells. The difference between them
is that variables can only be bound once in the first store, whereas the second
store contains pairs of the form x : y where x and y are variables of the
single-assigment store with y representing a cell. These stores have variables
that can be bound or unbound.

• An environment E: a mapping from variable identifiers to variables in the
store (e.g. E = {X→ x} means that the identifier X refers to the variable x
in the store).

Then, we can combine those tools together to get:

• A semantic statement: a pair (〈s〉, E) where 〈s〉 is a statement. It relates the
statement to what it refers in the store.

• An execution state: a pair (ST , σ) so that it gives a representation of which
variables values the statement sees.

• A computation: a sequence of execution states (ST0, σ0) → (ST1, σ1) →
(ST2, σ2) → . . .

Now that we know some concepts about execution states, we can define some
operations that statements enforce. Moreover, we can highlight that every compu-
tation step is atomic, i.e. the computation happens instantaneously, there is no
intermediate state.

2.2.2 Operations

Let us first define how semantic statements are performed. First, a program is a
statement 〈s〉 that has an initial state (empty value is written φ):

([(〈s〉, φ)], φ)

where the stack ST is represented between square brackets and contains the
semantic statement to be analyzed. The last entry is the store that has an empty
value as no variable can be accessed.

At each step, the first element of the stack ST is popped, and the right operation
according to its pattern is performed. The final execution state (if there is one)
has nothing more to do, and so its semantic stack is empty.

12

2.2. THE SEMANTICS OF OZ

Now, we can take a look at operations that can be done during the execution
of a program. We can split those operations in two partitions. Some of them are
non-suspendable statements, i.e. they do not need to evaluate a value to process,
they can never suspend (e.g. skip, sequential composition, variable declaration,
variable-variable binding, value creation). At the opposite, suspendable statements
are those which can suspend, i.e. wait for a value to be bound, until the activation
condition becomes true for the execution to continue (e.g. if, procedure call,
pattern matching).

The skip statement

The semantic statement is:
(skip, E)

Once this statement is popped, nothing is added in the environment neither in the
store, it just jumps to the next statement.

Sequential composition

The semantic statement is:
(〈s〉1 〈s〉2, E)

When there are two consecutive statements in the semantic stack, we decompose
them sequentially (i.e. pushing (〈s〉1, E) on the stack and then (〈s〉2, E)).

Variable declaration

The semantic statement is:

(local 〈x〉 in 〈s〉 end, E)

First, this statement creates a new variable 〈x〉 in the store. Second, the environment
is extended with a mapping between the identifier X which represents the value of
〈x〉 and the variable identifier in the store x: E′ = E ∪ {X→ x}. And then the
semantic statement (〈s〉, E′) is pushed on the stack.

Variable-variable binding

The semantic statement is:
(〈x〉1 = 〈x〉2, E)

It results in a binding of the two environments in the store E(〈x〉1) and E(〈x〉2).

13

2.2. THE SEMANTICS OF OZ

Value creation

The semantic statement is:
(〈x〉 = 〈v〉, E)

Where 〈v〉 is a value that is either a record, a number, or a procedure. This
execution creates a new variable x in the store with a reference to the value
represented by 〈v〉.

The if statement

The semantic statement is:

(if 〈x〉 then 〈s〉1 else 〈s〉2 end, E)

First, the activation condition E(〈x〉) must be determined (otherwise the execution
is suspended) and its value must be true or false, otherwise it raises an error. If
it is true, push (〈s〉1, E) on the stack, or if it is false push (〈s〉2, E).

Procedure call

The semantic statement is:

({〈x〉 〈y〉1...〈y〉n}, E)

When a procedure is called by the semantic statement, if the activation condition
is true (E(〈x〉) is determined) but the number of arguments is different from the
ones in the declaration of the procedure, execution raises an error.

Then, if E(〈x〉) has the form

(proc {$ 〈z〉1...〈z〉n} 〈s〉 end, CE)

push (〈s〉, CE + {〈z〉1 → E(〈y〉1), ..., 〈z〉n → E(〈y〉n)}) on the stack.

Pattern matching

The semantic statement is:

(case 〈x〉 of 〈lit〉(〈feat〉1 : 〈x〉1...〈feat〉n : 〈x〉n) then 〈s〉1 else 〈s〉2 end, E)

where 〈lit〉 and 〈feat〉 stands respectively for the label and the features defined
previously. It corresponds to the pattern to be matched (e.g. ’|’(1:X 2:Xr) for
lists in the Oz kernel language). If the activation condition is true (E(〈x〉) is

14

2.2. THE SEMANTICS OF OZ

determined), and if the label of E(〈x〉) is 〈lit〉 and its arity is [〈feat〉1...〈feat〉n], push

(〈s〉1, E + {〈x〉1 → E(〈x〉).〈feat〉1, ..., 〈x〉n → E(〈x〉).〈feat〉n})

on the stack.

The NewCell operation

The semantic statement is:

({NewCell 〈x〉 〈y〉}, E)

First, we have to create a new cell c and bind it to E(〈y〉) in the store σ. If the
binding did well, then add the pair E(〈y〉) : E(〈x〉) to the mutable store µ.

The thread statement

First, we have to update the concepts of execution state and computation defined
in subsection 2.2.1 for multiple semantic stacks:

• The new execution state is a pair (MST, σ) where MST stands for multiset
of semantic stacks. A multiset is a collection where items can occur more
than once, e.g. two distinct semantic stacks with identical contents.

• The computation is now a sequence of execution states (MST0, σ0) →
(MST1, σ1) → (MST2, σ2) → . . .

The execution of a thread is represented by Figure 2.1. At each computation
step, one semantic stack inside the MST is selected by the scheduler. And if it has
the form [(thread 〈s〉 end, E)] + ST ′, we add a new semantic stack [(〈s〉, E)] that
corresponds to the new thread.

Figure 2.1. Execution of the thread statement [VRH04].

More formally, the new computation step is written (with] denoting multiset
union):

({[(thread 〈s〉 end, E)] + ST ′}]MST ′, σ)→ ({[(〈s〉, E)]}] {ST ′}]MST ′, σ)

15

2.2. THE SEMANTICS OF OZ

2.2.3 Declarative variables vs. dataflow variables

Once bound, a declarative variable is a variable in the single-assignment store which
is bound to its value throughout the computation and is indistinguishable from its
value, i.e. if the store is {x = 1, y = 2}, doing x+ y is the same as doing 1 + 2.

Dataflow variables can be used before they have been bound. Assume a program
that performs first B = A+1 with A not yet bound. The program will wait until
the variable gets bound. Therefore, the program returns the same value either if
A = 2 is defined before or after the value creation of B. These variables are really
powerful in concurrent programming. Assiduous readers might have noticed the
link between suspendable statements (i.e. active condition) and dataflow variables.

2.2.4 Examples of execution

Now that we have defined concepts of semantics for the kernel language of Oz,
let us see how the abstract machine proceeds on some examples, starting with a
straightforward one.

A first example

Consider the program in Listing 2.9:

1 local A in
2 A = 10
3 local B in
4 B = A+1
5 end
6 end

Listing 2.9. Basic code in Oz.

This example can be considered as a statement 〈s〉 that can be executed by an
abstract machine. In the following, `i− `j means the statement from line i to line j.

1. The initial execution state is:

([(`1 − `6, φ)], φ)

The environment and the store are empty.

2. After the variable declaration we have:

([(`2 − `5, {A→ a})], {a})

The environment contains the binding of the identifier A with a, its value in
the store.

16

2.2. THE SEMANTICS OF OZ

3. There is a sequential composition of two statements, so we have:

([(A = 10, {A→ a})] [(`3 − `5, {A→ a})], {a})

Statements are decomposed sequentially.
4. Starting with the leftmost statement, we get a binding for A:

([(φ, {A→ a})] [(local B in B = A+1 end, {A→ a})], {a = 10})

5. The rightmost statement, is a variable declaration, so we have:

([(φ, {A→ a})] [(B = A+1, {A→ a, B→ b})], {a = 10, b})

6. There is a new variable binding, with B = A+1:

([(φ, {A→ a})] [(φ, {A→ a, B→ b})], {a = 10, b = 11})

7. And the final execution state is:

([], {a = 10, b = 11})

Working with procedures

Consider the program in Listing 2.10:

1 local Y in
2 Y = proc{$ X}
3 local A in
4 local B in
5 local C in
6 A = 4
7 C = (X==A)
8 if C then
9 B = 3

10 else
11 B = 5
12 end
13 end
14 end
15 end
16 end
17 local X1 in
18 X1 = 3
19 {Y X1}
20 end
21 end

Listing 2.10. Procedures in Oz.

17

2.2. THE SEMANTICS OF OZ

As in the previous example, all the code can be considered as a statement 〈s〉 that
can be executed by an abstract machine.

1. The initial execution state is:

([(`1 − `21, φ)], φ)

The environment and the store are empty.
2. After the variable declaration we have:

([(`2 − `20, {Y→ y})], {y})

The environment contains the binding of the identifier Y with its value in the
store y.

3. There is a sequential composition of two statements so we have:

([(`2 − `16, {Y→ y})] [(`17 − `20, {Y→ y})], {y})

Statements are decomposed sequentially.
4. Starting with the left-most statement, we have a binding for Y

([(`2−`16, {Y→ y})] [(`17−`20, {Y→ y})], {y = (proc{$ X} `3−`15 end, φ)})

Note that the contextual environment of Y is empty because it has no free
identifiers.

5. The rightmost statement starts with a variable declaration, so we have:

([(φ, {Y→ y})] [(X1 = 3 {Y X1}, {Y→ y, X1→ x1})],

{y = (proc{$ X} `3 − `15 end, φ)})

6. Then there is a value creation (we can hide the leftmost which has an empty
stack):

([(φ, {Y→ y, X1→ x1})][({Y X1}, {Y→ y, X1→ x1})],

{y = (proc{$ X} `3 − `15 end, φ), x1 = 3})

7. There is now a procedure application:

([(`3 − `15, {Y→ y, X→ x1})],

{y = (proc{$ X} `3 − `15 end, φ), x1 = 3})

8. After the three variables declarations and the two values creations:

([(`8 − `12, {Y→ y, X→ x1, A→ a, B→ b, C→ c})],

18

2.2. THE SEMANTICS OF OZ

{y = (proc{$ X} `3 − `15 end, φ), x1 = 3, a = 4, b, c = false})

9. After executing the condition:

([B = 5, {Y→ y, X→ x1, A→ a, B→ b, C→ c})],

{y = (proc{$ X} `3 − `15 end, φ), x1 = 3, a = 4, b, c = false})

10. And the final execution state is:

([], {y = (proc{$ X} `3 − `15 end, φ), x1 = 3, a = 4, b = 5, c = false})

2.2.5 Garbage Collector

Sometimes the semantic stack and the store can be very different. This is especially
the case when there are recursive calls to a procedure. The semantic stack can
remain bound by a constant size (last call recursion) while the store gets bigger at
each call.

Moreover, we know that a procedure needs only the information in the semantic
stack and in its contextual environment, i.e. the part of the store reachable from
the semantic stack. Therefore, the garbage collector was introduced in order to
reclaim the memory used by unreachable variables. Figure 2.2 shows the lifecycle
of a memory block. We see that the garbage collector makes the transition from
the inactive state to the free state (that is the reclaim operation).

Active Free

Inactive

Deallocate

Allocate

Become inactive

Reclaim

Figure 2.2. Lifecycle of a memory block (from [VRH04]). The reclaim can be done
manually or by garbage collection.

19

2.2. THE SEMANTICS OF OZ

When we are dealing with the automatic reclaiming of a garbage collector, two
kinds of program error can occur:

• Dangling reference. This error happens when a variable is erased from the
memory even though it is still reachable.

• Memory leak. This error is the opposite of the previous one. It happens when
a variable is considered as still reachable but is in fact not.

A typical garbage collector has two phases:

1. Starting from a root set, determine the active memory, i.e. all data structures
that are reachable.

2. Compact the memory by collecting all the active memory blocks in one
contiguous block.

20

Chapter 3

Interpreter

“The face is a picture of the mind with the eyes
as its interpreter.”

— Cicero

Now that we know how to code in Oz, we need to find a way to understand
what is written. For this purpose, we will need an interpreter. This tool parses
(i.e. decomposes) the source code following some rules.

In this chapter, we first discuss theoretical concepts of parsing a language. With
this base, we can forge a more accurate opinion on how to generate parsers in
JavaScript and how to evaluate them. Finally, a section talks about the parser we
choose for Glass Cat and how we can use it to interpret Oz.

3.1 Concepts of parsing a language

When the computer has to understand a programming language, it needs to know
what each token (i.e. word) means. This operation is called parsing. A parser
takes the source code as input and builds a data structure to analyze it.

The execution of a parser can be split in two steps (see Figure 3.1). First, the
lexical analysis splits the input characters stream into meaningful symbols defined
by a lexical grammar. This operation generates tokens.

The next stage is the syntactic analysis; it checks that tokens form a valid
expression. This is done with reference to a language grammar that chooses the
appropriate actions to continue [Wik14b].

21

3.1. CONCEPTS OF PARSING A LANGUAGE

Source
string

Lexical
analysis

Lexical
grammar

Tokens
Syntactic
analysis

Language
grammar

Parse tree

Figure 3.1. Typical flow of data in a parser (steps inside the parser are filled in grey.
Rectangles stand for programs whose inputs and outputs are represented with rounded
boxes).

3.1.1 Define grammars

The first stage is to defined grammars. There are two kinds of grammar to define:
a lexical grammar for the lexer and a language grammar for the syntactic analysis.
Let us see how to define them.

Lexical grammar

This grammar works with the lexer which takes a stream of characters and returns
them as a list of tokens. Therefore, this grammar has to define to token which
corresponds to the input character. For example, we can match the + operator to
the token PLUS:

"+" {return ’PLUS’;}

Language grammar

This grammar defines a set of rules (i.e. a path to follow) to analyze the input
stream according to the language.

In computer science, the most common type of grammar is the context-free
grammar [Nel14, Mig14]. A rule is composed of two parts:

1. a name;
2. an expansion of the name.

When describing languages, we cannot miss the extended Backus-Naur Form
(EBNF) which is a formal notation for describing grammars. The expansion can
be a terminal symbol which is simply a token or a non-terminal symbols which is
a sequence of tokens. Every rule in EBNF has the following structure:

<name> ::= expansion

22

3.1. CONCEPTS OF PARSING A LANGUAGE

Where <name> is a non-terminal symbol whereas expansion is a sequence of
terminal and non-terminal symbols in a specific order. The expansion part can
have different values which are separated by a vertical bar (|).

For example, we can define an expression to represent a sum:

<exp> ::= INTEGER ’+’ <exp>
| INTEGER

In the previous example, there are two terminal symbols (INTEGER and ’+’).
Now that we can write a grammar, let us see how the first step of the parser

works [Nor08].

3.1.2 Lexical analysis (tokenizing)

The lexical analysis (or lexer) breaks the input stream of characters into tokens.
For example, if we have the following code as input stream:

local X in X = 10 end

Then it must produce the sequence of tokens:

local, X, in, X, =, 10, end

For example, a famous tokeniser is GNU Flex (Fast Lexical Analyser) [Pro08].

3.1.3 Syntactic analysis

Once tokens have been generated, the syntactic analysis checks if tokens form an
allowable expression. This step works with reference to the language grammar
defined earlier.

It produces a parse tree which is a representation of the structure of the source
code (see Figure 3.2).

At this stage we can have a very common error due to the ambiguity of a
grammar. A grammar is ambiguous if it describes at least one sentence for which
there are more than one parse tree. This kind of error is particularly frequent in
arithmetic expressions, let us see how the parse tree can be built for the sentence
id+id*id:

With the following grammar:

E ::= E+E | E*E | (E) | id

23

3.1. CONCEPTS OF PARSING A LANGUAGE

E

E

T

F

id

+ T

T

F

id

* F

id

Figure 3.2. Example of parse tree for the input id+id*id [CIAD12].

The sentence can be parsed with a shift/reduce operation 1 (underlined token
is the next one to be expanded):

• E ⇒ E + E ⇒ id + E ⇒ id + E * E ⇒ id + id * E ⇒ id + id * id

• E ⇒ E * E ⇒ E + E * E ⇒ id + E * E ⇒ id + id * E ⇒ id + id * id

We see that the sentence id+id*id with this grammar leads to two different
expansions, i.e. two parse trees, which are depicted in Figure 3.3.

E

E

E

id

+ E

id

* E

id

(a)

E

E

id

+ E

E

id

* E

id

(b)

Figure 3.3. Examples of parse trees for the input id+id*id leading to an ambigu-
ity [CIAD12].

1In this example, we use the leftmost derivation but it could have been also demonstrated with
a rightmost derivation. A complete definition and examples can be found in [CIAD12].

24

3.2. PARSER GENERATORS

3.2 Parser generators

A lot of tools can generate the source code of a parser, they are called parser
generators.

In this section, we present some of them and make a comparison in order to
select the most adequate one. All of them combine both lexical and syntactical
analysis.

3.2.1 Bison

GNU Bison is a parser generator written in the 1990s by Robert Corbett and
Richard Stallman [Lev09]. It converts a context-free grammar into a deterministic
parser. Moreover, it can generate a parser in C, C++ and in Java but the latter
is still experimental [FSF12a]. It can recognize languages described by LALR(1),
LR(1), IELR(1), GLR grammars [Wik14a].

It works for a wide range of languages, from a simple calculator to complex
programming languages.

3.2.2 Jison

Jison was written by Zach Carter in 2009 to help study for a compilers course [Car09].
It is essentially a clone of Bison but in JavaScript. It can recognize languages
described by LALR(1), LR(0), SLR(1) grammars.

3.2.3 PEG.js

PEG.js was written in 2010 by David Majda and also generates a parser in
JavaScript [Maj10]. The grammar used is slightly different from the one of Jison
(and thus Bison) and the syntax is sensibly the same too. PEG.js uses an alternative
to context-free grammars, packrat and supports any language defined by an LL(k)
or LR(k) grammar [For14].

25

3.3. WORK WITH JISON

3.2.4 Comparison

As Glass Cat is a web platform, it needs to run in a web browser. Moreover, as we
want the user not to wait too long for the result, Glass Cat has to be computed as
fast as possible. As we supposed codes to be reasonably small, it does not require
a specific power on servers. It can be parsed directly on the client side. Therefore,
we have to compare the two parser generators which produce JavaScript.

We can compare Jison and PEG.js according to [Byn10] (see Tab. 3.1). Based
on the number of features it has, the code size it produces and finally the speed.

Features Code size Speed
[operations/s]

Jison More features (operator
association, precedence)

± 12300
characters 972

PEG.js Easier but less features ± 10000
characters 12.25

Table 3.1. Comparison of Jison and PEG.js parsing the same input. The speed test was
run from [Byn10] and parses a 512 characters long text.

The test run on [Byn10] shows that Jison is 79% quicker than PEG.js. Moreover,
Jison has more features than PEG.js so it may be more suitable for a more complex
language. We conclude that Jison is a better parser generator than PEG.js for
Glass Cat.

3.3 Work with Jison

As explained earlier, Jison combines both lexical and syntactical analysis. Its lexical
analyzer is modeled according to Flex and its parser is based on Bison. Someone
who knows Bison, which is well documented, can easily switch to Jison.

Furthermore, Jison reports errors in the lexer and in the parser. Unfortunately,
errors in the lexer are not very verbose and it can be smart to add some dummy
regular expressions in order to process them in the parser and show a better error
message [Pos12].

The lexical grammar and the language grammar must be in the same file and they
are going to be compiled together with the command jison my_grammar.jison.

26

3.3. WORK WITH JISON

3.3.1 Lexical analysis

Let us start with the definition of the tokens for the lexical analysis:

1 /* lexical grammar */
2 %lex
3

4 %%
5 \s+ /* skip whitespace */
6 [0 -9]+("."[0 -9]+) ?\b { return ’NUMBER ’;}
7 "*" { return ’*’;}
8 "-" { return ’-’;}
9 "+" { return ’+’;}

10 "^" { return ’^’;}
11 "$" { return ’DOLLAR ’;}
12 "?" { return ’QUESTION_MARK ’;}
13 "=" { return ’OPERATOR_ASSIGNMENT ’;}
14 <<EOF >> { return ’EOF ’;}
15

16 /lex

Listing 3.1. Lexical grammar with Jison.

Listing 3.1 shows a lexical grammar where lines 2 and 16 are the borders of the
lexical grammar (lex stands for lexer). And its principle is relatively easy to
understand:

• Write the token to parse at the beginning of a line between quotes.

• Specify which name corresponds to this token. It can be the same symbol as
the token (like for * at line 7) or a new string (like for $ at line 11).

3.3.2 Precedence

After the /lex of the lexical analysis, we can define precedence for some tokens
(see Listing 3.2), i.e. the order in which the shift/reduce operation will be done.
Ambiguity of Figure 3.3 can be resolved with this concept as the parser knows
which parse tree is good.

1 /* operator associations and precedence */
2

3 %left ’+’ ’-’
4 %left ’*’ ’/’
5 %left ’^’
6 %left UMINUS

Listing 3.2. Definition of operator associations and precedence.

27

3.3. WORK WITH JISON

3.3.3 Define a new rule

In order to define a new rule in the language grammar, we can follow the pattern
defined in Listing 3.3.

1 name
2 : left TOKEN right
3 { /*do something */ ; }
4 | left TOKEN_2 right
5 { /*do something 2*/ ; }
6 ;

Listing 3.3. Definition of a new rule.

This example begins with the name of the rule and two sentences which can perform
an action once its children are parsed.

A more complex example is given in Listing 3.4 and defines a real grammar
according to the tokens given in the previous subsection in Listing 3.1.

Line 1 says from which rule the parser must start to parse, i.e. which rule is
the root of the parse tree. Furthermore, it requires some comments to understand
what it really does [FSF12b]:

• $$ returns the value of the left-hand side of the rule.
• $n returns the value of the n-th variable on the right-hand side of the rule.
• yytext is the actual token read so the line Number(yytext) gives a numerical

representation of the token which has just been read.
• as the generated code is JavaScript, we can replace the /*do something*/

part with a JavaScript code.

Moreover, as this stage builds a tree to know the structure of the sentence (like in
Figure 3.2), it will perform a depth-first traversal of the tree, i.e. recursively visiting
the subtrees of each node from left to right and then the node itself. The programmer
must be aware that the first rule encountered has its /*do something*/ performed
at the end.

28

3.3. WORK WITH JISON

1 %start expressions
2

3 %% /* language grammar */
4

5 expressions
6 : exp EOF
7 {print($1);}
8 ;
9

10 exp
11 : exp ’+’ exp
12 {$$ = $1+$3;}
13 | exp ’-’ exp
14 {$$ = $1 -$3;}
15 | exp ’*’ exp
16 {$$ = $1*$3;}
17 | exp ’/’ exp
18 {$$ = $1/$3;}
19 | exp ’^’ exp
20 {$$ = Math.pow($1 , $3);}
21 | ’-’ exp %prec UMINUS
22 {$$ = -$2;}
23 | ’(’ exp ’)’
24 {$$ = $2;}
25 | NUMBER
26 {$$ = Number (yytext);}
27 ;

Listing 3.4. Definition of rules.

Mid-rules

Sometimes we want to /*do something*/ before the end of the complete sentence.
This is called a mid-rule and is easily handled by Bison where it is written [FSF12a]:

1 name
2 : left TOKEN { /*do something 1*/ ; } right
3 { /*do something 2*/ ; }
4 ;

Listing 3.5. Mid-rule in Bison. do something 1 is performed once TOKEN is parsed.

29

3.3. WORK WITH JISON

But in Jison it is not yet defined and we must decompose the rule in order to
do it [Car13]:

1 name
2 : name2 right
3 { /*do something 2*/ ; }
4 ;
5

6 name2
7 : left TOKEN
8 { /*do something 1*/ ; }
9 ;

Listing 3.6. Mid-rule in Jison. do something 1 is performed once TOKEN is parsed.

30

Chapter 4

Visual Programming

“Draw me a sheep!”

— A. de Saint Exupéry, The Little Prince

All over the years, humans have always tried to represent the things they could
not see in order to understand them. Moreover, as the adage says: a picture is
worth a thousand words. To help students understanding what they cannot see,
we are building a learning tool for them to represent the memory. This tool has to
show what is happening during the execution of an Oz program. Hundhausen et al.
said visualization technology is not an instrument for transferring knowledge into
students, but can serve as a catalyst for learning [Hun02].

This chapter first defines the concept of software visualization. Then, we see
which specifications this kind of tool must satisfy and more precisely those in the
educational field. Afterwards, we look at some programs that show the execution
of a code. For each of them, we spot the most innovative concepts they propose.
As a conclusion, the design choices of GlassCat are unveiled.

4.1 Definition

The global denomination for software tools that can visualize programs is software
visualization. In [Die07], Stephan Diehl defines software visualization as a tool that
includes a wide range of techniques in order to develop and evaluate codes. This
tool has to represent graphically the structure, the execution and the evolution of
a program.

Therefore, we can be more specific and identify two broad subfields within
software visualization [S+12]. On the one side, algorithm visualization has a high
level of abstraction and is used to visualize general algorithms (e.g. quicksort,

31

4.2. A REFERENCE MODEL FOR VISUALIZATION

binary tree operations). On the other side, program visualization has a lower level
of abstraction and visualizes concrete, implemented programs.

In this master’s thesis, we focus on program visualization tools. Algorithm
visualization is too complex to be interesting for learning about a basic program
execution like those a beginner wants to do with Oz.

4.2 A reference model for visualization

Card et al. propose to see visualization as a mapping from data to a visual form
that the human perceives. Therefore, they made a reference model for visual-
ization [MMC02]. Figure 4.1, adapted from [CMS99] shows the transformations
applied to the flow of data.

Figure 4.1. The reference model for visualization [MMC02] proposed by Card et al.
Visualization converts data into a visual form. Of course, the output must make sense for
a human. [CMS99]

The first transformation (Data Transformations) converts raw data into more
usable data tables because the format of the raw data can be hard to work
with. Data tables are an abstraction of the raw data, such as parse trees or
dependence graphs, and can include some metadata to give more information about
the characteristics.

The second transformation (Visual Mappings) is the core of the reference model
as it has to take the mathematical relationships of the data tables and map them
to a visual structure based on graphical properties.

Finally, the last one (View Transformations) creates items and displays datas
in a user-friendly way.

We will establish the link between Glass Cat and this figure in the chapter
about implementation.

32

4.3. CLASSIFICATION

4.3 Classification

Before starting to develop a new tool, it is mandatory to focus on some questions.
Otherwise, the software will be too general and will not focus on a particular
problem that will lead to a lack of functionalities. In their task-oriented classifi-
cation [MMC02], Maletic et al. give five dimensions to guide the development of
visualization softwares.

Here are their five dimensions:

1. Task – why do we need this tool? (e.g., reverse engineering, defect location)
2. Audience – who will use it? (e.g., expert developer, team manager)
3. Target – what do we need to represent? (e.g., source code, execution data)
4. Representation – how can we represent it? (e.g., 2D graphs, 3D objects)
5. Medium – where the visualization will be represented? (e.g., onscreen graphics,

virtual reality)

For this master’s thesis, our specifications considering the classification of
Maletic are:

1. Task – help the learning and teaching of the Oz kernel language.
2. Audience – Oz beginners who know the Oz kernel language.
3. Target – part of the Oz kernel language.
4. Representation – step by step execution.
5. Medium – onscreen graphics.

4.4 Visual representation in education

Students are sometimes afraid of delving into a new language or the first program-
ming language they learn. Most of the time they are lost and have no idea of what
kind of tool to use. Reading a tutorial is not sufficient to learn something (only
10% is learned), but they will remember 30% of what they see [SJR+13]. So we
can wonder how visual representation can be helpful for education?

4.4.1 What to see?

In their classification, Kelleher and Pausch [KP05] identify three ways to help
students to understand program execution.

1. Tracking: a system for tracking program execution that will show what
happens in memory when a program is running.

33

4.5. A BRIEF PRESENTATION OF SOME VISUAL PROGRAMS

2. Physical explanation: replace a general-purpose programming language by
another one whose commands have a physical explanation in a virtual world.

3. Metaphors and graphics: describe every action in a programming language
through metaphors and graphics.

According to these criteria, we see that this master’s thesis brings a real help
for education as it lies in the tracking criterion.

4.4.2 Improve the student’s engagement

If students program by their own, they will remember 90% of what they are
doing [SJR+13]. Therefore, we can present the engagement taxonomy introduced
by Naps et al. in [NRA+02] which describes increasing ways of engagement with a
visual interaction.

Seven years later, Myller et al. improved this taxonomy with four additional
levels. They were more focused on collaborative learning and they concluded that
as the level of visualization gets higher, the engagement, the communication and
collaboration between the users get higher too.

The extended engagement taxonomy as described by Myller et al. is summarized
in Table 4.1. We have to note that the levels after viewing do not form a strict
hierarchy but we can hypothesize that a higher level has a greater impact on
learning than a lower one. Moreover, levels higher or equal to viewing implies to
view the visualization. So for Naps et al., the combination of many levels leads to
a better learning.

We want Glass Cat to gather four items from Table 4.1: (3) the user can control
the visualization; (4) the learner can enter input; (7) the student can change a value
and see the difference; (9) the learner can present and explain the visualization to
others.

4.5 A brief presentation of some visual programs

For many years, a lot of visualization softwares have been developed with some
good ideas. Let us have a look at some of them and which interesting concepts it
brings.

4.5.1 JIVE

JIVE (see Figure 4.2) is an interactive execution environment for Eclipse [Uni11].
It can be used to debug (with visualizations of object structure and method
interactions), to facilitate software maintenance (by providing insight into the
dynamic behavior of programs) and it can also be used to teach and learn Java.

34

4.5. A BRIEF PRESENTATION OF SOME VISUAL PROGRAMS

Level Description

1 No viewing There is no visualization tool at all.
2 Viewing The learner simply views a visualization with-

out interacting with it.
3 Controlled view-

ing
The learner can control the visualization, e.g.,
by changing the animation speed or choosing
which objects to examine.

4 Entering input The learner enters input to the target software
before or during execution.

5 Responding The learner answers questions about the tar-
get software.

6 Changing The learner changes a visualization while
viewing, e.g., via direct manipulation of the
visualization components.

7 Modifying The learner modifies a visualization before
viewing, e.g., by changing the target software
or an input set.

8 Constructing The learner constructs a visualization inter-
actively from components such as text and
geometric shapes.

9 Presenting The learner explains a visualization to others.
10 Reviewing The learner views the visualization in order

to provide feedback to others about the visu-
alization or the target software.

Table 4.1. The extended engagement taxonomy (based on Myller, Naps et al. [MMSBA04,
NRA+02]).

A very nice thing with JIVE is that it uses a sequence diagram to display
method calls per object/class and thread.

4.5.2 Memview

The Memview debugger (see Figure 4.3) can automate the creation of memory
diagrams [GMT+05]. Memview focuses on three key concepts: (1) the memory
address (2) the reference created in memory (3) the difference between the stack,
the heap and static space.

Memview brings a new idea to show the stack, the static space and the heap of
Java programs.

35

4.5. A BRIEF PRESENTATION OF SOME VISUAL PROGRAMS

Figure 4.2. JIVE represents an event sequence as a sequence diagram and each execution
state as an object diagram [Uni11].

Figure 4.3. Memview shows the stack, the heap and static space [GMT+05].

36

4.5. A BRIEF PRESENTATION OF SOME VISUAL PROGRAMS

4.5.3 PlanAni

PlanAni (see Figure 4.4) executes Pascal programs and uses images as
metaphors [SK]. For example, a fixed-value is represented by a carving stone,
changing variables inside loop are represented by footprints with the new value
written at each step.

With PlanAni, it is easier for beginners to visualize the steps of a program but
it is more adequate for younger people than for university students.

4.5.4 CSmart

CSmart (see Figure 4.5) takes another approach than what we have already
seen [GBWS11]. Before students start coding in C, the teacher has to type the code
he expects and annotate it with comments. Then, CSmart will give annotations to
the students at each step [GBWS11].

CSmart proposes a good way to learn coding but it is mandatory for the teacher
to define its own exercises.

4.5.5 ViLLE

ViLLE (see Figure 4.6) is an online learning platform [RLKS08]. It is used to show
the dynamic behaviour of program execution. Moreover, ViLLE supports Java,
C++, pseudo-code and it can also handle new languages.

A new concept here is that students have to answer to questions while executing
the code, which makes them engaged more deeply in the learning process.

4.5.6 Python online tutor

Online Python Tutor (see Figure 4.7) is a web-based program visualization tool for
Python [Guo13]. With this tool, a student can type his own code and see how the
computer executes it, line by line. Moreover, it shows the stack frames, variables
and heap object contents.

Online Python Tutor has a nice design and furthermore, a student can generate
an URL of the current visualization at an exact execution point and send it to
someone.

4.5.7 Jeliot 3

Jeliot is one of the longest-lasting and most-studied program visualization tools for
CS1 [MMSBA04, S+12, Hel09]. It was introduced as Eliot in 1997. Then, Jeliot I,
Jeliot 2000 and Jeliot 3 came. The two first versions shared the same goal: to
ease the production of algorithms animations. Jeliot I can be used on the Internet

37

4.5. A BRIEF PRESENTATION OF SOME VISUAL PROGRAMS

Figure 4.4. PlanAni executes Pascal programs. Here it is the visualization through an
array [SK].

Figure 4.5. CSmart extracts comments from the teacher’s source code and gives them
as a help in the student’s code: the Learner’s Integrated Development Environment
(L-IDE) [GBWS11].

38

4.5. A BRIEF PRESENTATION OF SOME VISUAL PROGRAMS

Figure 4.6. The visualization view of ViLLE consists of three areas. (1) contains the
program code (2) is the program controls (3) displays the call stack (4) gives the program
outputs and variable states [RLKS08].

Figure 4.7. Online Python Tutor displays (1) the line of code currently executed (2) a
way to control the state of the execution (3) stack frames and variables (4) heap object
contents and pointers [Guo13].

39

4.6. DESIGN CHOICES

while Jeliot 2000 was designed for novice learners. In order to make it as modular
as possible, they separated the interpreter from the visualization, so they use an
intermediate language between them. This language consists of simple ASCII text
lines that carry all the information needed to visualize the interpretation of a
program.

Jeliot has a control panel with VCR-like buttons to control the visualization
frames. When an error is raised, it highlights the code where the error happened.

4.5.8 Summary

In this section, we have seen some visual programs. We started with JIVE which
has the advantage to display the method calls so that students can follow a timeline
of the execution of their programs. Then a nice thing with Memview is that it
shows the stack, the static space and the heap of Java programs. With this tool,
students can have a look at what is happenning in the memory. Afterwards, we
saw PlanAni which uses a metaphoric way to process. But this concept is only
interesting when working with young students. CSmart is a good idea but not very
attractive as it only consists of writing the comments from the teacher’s code in the
student’s code. ViLLE has the same advantage as Memview but supports many
programming languages. Moreover, Python online tutor can generate a sharable
URL of the current visualization at an exact execution point. Finally, Jeliot 3 can
highlight the erroneous line in the code.

4.6 Design Choices

We defined Glass Cat according to each theoretically concepts of visual programming
presented in Section 4.4. Furthermore, we saw a lot of inspiring ideas in the previous
section. It is now time to unveil the design of Glass Cat.

4.6.1 Goals

The most valuable goal we want to achieve in the design part, is to produce the
best user-friendly website. To do that, we can define three sub-goals:

Goal 1: Minimal number of buttons as the user is lost when there are a lot of
choices.

Goal 2: Easy way for the user to see what he wants.

Goal 3: Scalability in order to deal with long results.

We explain in the following subsections how we achieve those goals. The first
subsection treats the two firsts goals and the scalability subsection talks about the
third goal.

40

4.6. DESIGN CHOICES

First, we have to decide what will be shown to the user . . . semantics of course!
But there are a lot of things to show so we have to decide what is the most relevant
part. It turns out that the state (i.e. the code that must still be parsed) and the
store (i.e. variables in the memory) are the most useful part of semantics to display.
The environment is not displayed as it only shows the link between variables and
their value in the memory, which can be deducted according to variables name.

4.6.2 Interaction

The main objective of the design is to make it easy to use without the need of
reading a manual. Moreover, it must be beautiful otherwise people do not want to
use it and they are bored working with it.

After many ideas and reflections, Glass Cat was born. The website contains
five areas (see Figure 4.9):

1. A menu: access code examples, information about the author and Glass Cat.
2. A textarea: auto-indent the code and colorize keywords, strings, comments.
3. A program control: used to manage steps of the semantics (previous, next

and execute to start parsing, GO TO step is a plus as the user can directly
go faster to a specific step).

4. State: displays the state from right to left.
5. Stores (single-assignment and cell stores): display the store (up is the single-

assignment one, down is the cell store).

Another interaction that must be handled is when an error occurs while parsing.
The user must be warned in an understandable way. Errors appear in a popup in
front of the window, while the background is dimmed. Some errors are explained
in a human-language with the exact explanation of what is going wrong (see Fig-
ure 4.10 (a)). Others are basic errors returned by the parser (see Figure 4.10 (b))
and those are displayed without any treatment.

4.6.3 Scalability

Since the student’s code can be very long, Glass Cat must be able to handle huge
store and state. Therefore, boxes are scrollable in both ways. Moreover, the store
is a stack so every new element is added at the top.

In the implementation part, we talk a little more about the scalability in order
to avoid infinite loops.

41

4.6. DESIGN CHOICES

Figure 4.8. Jeliot 3 shows the execution of Java programs step by step.

Figure 4.9. Design of Glass Cat.

42

4.6. DESIGN CHOICES

(a) Smart

(b) Dumb

Figure 4.10. Example of errors shown by the error manager in Glass Cat.

43

4.6. DESIGN CHOICES

44

Chapter 5

Pythia

“Do not train a child to learn by force or harshness; but
direct them to it by what amuses their minds, so that you
may be better able to discover with accuracy the peculiar

bent of the genius of each.”

— Plato

Nowadays, the Internet is accessible to a large number of people. Some of them
are interested in programming but they may be stuck because they do not know
how to code. Maybe they want to learn a new language but have no idea about
how to learn it. These people can use Pythia, a web-platform to learn how to
program. Students can register on the website to get exercises with smart feedbacks.
Glass Cat has the same goal than Pythia, offering to the students a way to learn
programming. Moreover, as unity makes strength, the work of this master’s thesis
can be integrated inside Pythia.

This chapter briefly explains how Pythia works and how Glass Cat could be
integrated into it.

5.1 The Pyhia platform

On the Pythia website, students choose a module. Then they have some exercises
to do. Figure 5.1 shows the first one for Oz. There are multiple areas to focus on:

1. The first box gives the context, i.e. the aim of the exercise and functions
that can be useful to solve it.

2. A texteara to code in.

45

5.2. PYTHIA AND THE EDX PLATFORM

3. Once the student clicked on the button to submit his/her work, this box
displays the output of the code with a smart feedback.

4. A green frame means that the result is what it is expected. On the contrary,
a red frame is not a good one.

Figure 5.1. The first exercise for Oz on Pythia.

5.2 Pythia and the edX platform

Since January 2014, the Oz course taught by Prof. Peter Van Roy is accessible on
edX, a platform for MOOCs. As a programming course, assessing the students
must be performed by checking their ability to produce code [CBR14]. Therefore,
the Pythia platform was integrated into edX to grade programs while providing
relevant feedbacks.

This course sees a part of LFSAB1402 taught at the Université catholique
de Louvain and also contains the semantics. On the MOOC, students start by
watching videos where the professor introduces the theory for the week. Then, they
have classical and coding exercises to do. Classical exercises expect a word or a
sentence as answer while coding exercises are based on Pythia.

46

5.3. INTEGRATION OF GLASS CAT

5.3 Integration of Glass Cat

Figure 5.2 shows a text area on the edX platform where the student can code and
get the feedback from Pythia. We can integrate Glass Cat at this stage. Learners
can code in this textarea and check the semantics of their code directly on Glass
Cat simply by pressing the button “Run on Glass Cat”. Once this button is pressed,
a new tab with Glass Cat is opened and the input is already filled with the code
from the textarea (see Figure 5.3).

Figure 5.2. Example of textarea on Pythia/edX. When the student has written a code, it
can checks its semantics on Glass Cat.

47

5.3. INTEGRATION OF GLASS CAT

Figure 5.3. Glass Cat is filled with the student’s code and she/he can submit it back to
Pythia/edX by pressing the “Submit” button.

48

Chapter 6

Implementation

“Description begins in the writer’s imagination,
but should finish in the reader’s.”

— Stephen King, On Writing: A Memoir of the Craft.

In the previous chapters, we decided how Glass Cat should look like. We also found
a parser generator to make it alive. Now, it is time to explain the structure of the
program, to see the steps to go from a grammar to a website that displays the
semantics of a code in Oz.

This chapter is divided according to the structure of Glass Cat, i.e. the
interpreter and the visualisation part. We explain how they interact together and
give a global description of the code.

6.1 Structure of the program

Along this master’s thesis, we have defined Glass Cat according to two distinct
parts (see Figure 6.1) (1) a back-end which is the heart of the program and analyzes
the code the user provided and (2) a front-end that implements the visual part.

Back-end glass_cat.js Front-end

Figure 6.1. The structure of Glass Cat can be divided into a back-end which generates a
JavaScript file used by the front-end to display semantics. Files are represented in rounded
boxes and compilations or calls to external programs are symbolized by rectangles.

49

6.2. BACK-END

6.2 Back-end

The back-end generates a JavaScript file that parses a code written in the kernel
language of Oz. The structure of this part is sketched in Figure 6.2. It takes two
input files (oz.jison and ast_nodes.js) and outputs one single file glass_cat.js.
The upper path generates the parser oz.js with Jison, from a grammar. Afterwards,
this file is concatenated with ast_nodes.js for performance reasons [Bak12].

oz.jison Jison oz.js

+

ast_nodes.js

glass_cat.js

Parser

Figure 6.2. Structure of the back-end of Glass Cat. Files are represented in rounded boxes
and compilations or calls to external programs are symbolized inside rectangles. The +
operator represents a concatenation.

In this part, we start with an explanation of the parser which converts the code
into a syntax tree. Then we look at the objects that are created by this parser and
how the interactions can be done between the nodes of the tree.

6.2.1 Parser

Inside the file oz.jison, we must define a grammar following an EBNF notation
as explained in Chapter 3. An example of a rule is shown at Listing 6.1 but a
complete description can be found in Appendix A. In this subsection, we explain
some points we must be aware of when we use the parser oz.js.

Jison receives the grammar and generates a scanner and a parser inside the
same output file oz.js. But, before the end of the compilation, it can raise an
error if there is an ambiguity in the grammar. If a sentence can lead to more than
one parse tree, it gives the paths in the trees which generated a failure.

50

6.2. BACK-END

When oz.js is used, the scanner tokenizes the code according to the lexical
grammar. During this step, we must pay attention to some points:

• It can remove comments from the input according to a regex.

• A bad match. When the scanner reads a new character, it checks sequentially
if it is in the grammar we provided. E.g consider a grammar that contains
first a token for : and then another one for :=. If the input stream has a :=,
the scanner reads the first character of this string and finds a match for : in
its grammar. Instead, if we define a token for := before the one for :. Then
when the scanner sees : in the input stream, it thinks that it is the beginning
of := and checks if the next character is =. Longest match must be at the
beginning of the grammar and the more inaccurate ones at the end of the
grammar.

• Errors are raised when there is no match. Unfortunately, there is no error
when the input is assigned to a wrong token.

Next step, the parser has to find a sentence that matches the input according to
the tokens returned by the scanner. If it does not succeed, it throws a syntax error
with the line where the error happened. As we are working on a educational tool,
a better description of an error can help students to understand why their code is
wrong. Therefore, we can add some dummy regular expressions in the grammar to
let wrong inputs to match. Then, the next step has to verify if this input is correct
or not and throw an error with an exact definition of the failure.

6.2.2 Parse tree nodes

Once the parser has treated the input, a parse tree is generated. This tree contains
objects that are created by the parser every time a sentence is matched. These
objects are defined in the file ast_nodes.js.

This part is the heart of Glass Cat because it manages every operation done on
sentences. Moreover, it implements the concepts of Oz defined in Chapter 2.

Let us have a look back at the language grammar used by the parser. For exam-
ple, a part of the variable declaration from the grammar 1 is shown in Listing 6.1.

We can observe the tokens for the local 〈x〉 in at line 2. When the parser sees
this kind of sentence, it executes the children of this node, then it creates a new
VariableDeclarator object with the name of the identifier 〈x〉 as argument (the
other argument is explained with procedures).

1The complete definition of the rule contains many sub-rules but this short example gives a
first approach of how it works.

51

6.2. BACK-END

1 variable_decl
2 : KEYWORD_LOCAL variable_creation_id KEYWORD_IN@
3 { $$ = new VariableDeclarator ($2 , cur_decl);}
4 ;

Listing 6.1. Variable declaration in the grammar with the creation of a new object.

As explained in Chapter 3, $$ means the returned value. This implies that the
parent node can access this object.

Inside the class VariableDeclarator, a few things must be done:

• Define this variables with the type of the node and its value. These variables
are used to know the kind of node we are dealing with. This is very useful to
build the semantics.

• Check if there is already another identifier with the same name in the store.
Consequently, we count the number of declarations i for each identifier 〈x〉
in a global variable. If this number is equal to 0, then this is the first time
that an identifier has this name. Otherwise, the identifier must be renamed
〈x〉_(i+ 1).

• Create a new variable 〈x〉 in the store. We represent the store as a dictionary
in a global variable. When a new entry is added, we put the identifier as a
key of this dictionary with an empty value.

We see that this implementation is really similar to what we defined in Section 2.2
with the semantics statements of Oz. The novelty is that we check the name of the
identifier and rename it.

We can wonder why the variable declaration is not defined as a whole sentence.
In fact, as we have seen earlier, the parse tree is traversed with a depth-first
search algorithm. Therefore, the tree of Figure 6.3 executes first the code from
the node variable creation id, then variable decl and so on. If there were
no mid-rules, the statement 〈s〉 where the identifier is declared would have been
evaluated first. . . even before the creation of the identifier.

Moreover, with mid-rules, we can define the end of the scope of an identifier
at the variable creation node as its right child is the terminal token END. We
perform this operation by deleting the identifier from the store 2. Doing this way,
we know if an identifier is declared or not at the current line.

6.2.3 Semantics

Now that we can define a new rule, we must store semantics of each statement in
order to display them. We have to save the store and the state to be evaluated
after the current statement.

2The store here does not correspond to the semantic store that is displayed.

52

6.2. BACK-END

start

variable
creation

variable
use

variable
decl

LOCAL
variable

creation id

IDENTIFIER

IN

block

...

END

EOF

Figure 6.3. Abstract syntax tree (AST) from the starting point of the grammar down to
the creation of a variable. The tree is traversed in the depth first search order [Lev09]. The
grey node corresponds to the place where the object representing the variable declaration
is created.

We implemented a function add_semantics for each object. This one takes
three arguments (1) the state that follows (2) the value to add in the store (3) the
type of this statement. The object stores its semantics in a variable. Moreover,
while this object goes up the tree, its semantics is merged with the one of the
parent object and so on up to the root.

As a new call to the function add_semantics defines a new step to browse, it is
mandatory to know where we must add this new semantics. Therefore, let us have
a look at Figure 6.3 to find a node which knows the informations we need. If we
continue with the variable declaration, the state is the statement inside in 〈s〉 end
which corresponds to the node block in the tree. And the new entry in the store
is the identifier 〈x〉. The most adequate node is variable use as it sees the next
statement 3 and it can get the object returned by the variable decl node (and
so access the name of the identifier).

But there is a bottleneck, as the block is evaluated before variable use, their
semantics is evaluated in the same order. Whereas, the semantics of the variable
creation must be displayed first. Therefore, we must re-order them before returning
the object.

3Jison can give the location references of a token inside an input with @n where n is the location
of the n-th variable on the right-hand side of the rule.

53

6.2. BACK-END

Cells

For the cells, we define another store like the mutable store defined in Section 2.2.
When there is a Y = {NewCell X} we must create a new cell ci in this store where i
is an incremental number according to the number of cells. Therefore, we have a
global variable which keeps track of every cell created. And when the value of the
cell changes, the mutable store knows if the cell has to point to another identifier.

6.2.4 Procedures

When there are no procedures, we can execute the parse tree instantaneously. As
the parser reads the input, it creates all the nodes and they can build the output
directly.

On the other hand, when we are working with procedures, things are different.
We cannot process the parse tree for the content of the procedure anymore, as the
values of the parameters are not yet known. As the parser reads sequentially the
input, it cannot skip the procedure and parse it when there is a call. Therefore, we
must keep track of every operation that is happening inside the procedure in order
to replay it.

While parsing, every new object created in the parse tree adds a string to a
global variable with all the informations necessary to replay it (statements and
a reference to their locations). As the parser is the only entity that can see the
structure of a program and thus add the semantics, we must add them to the
global string too. In fact, statement locations are added to a global dictionary
while parsing. When objects are created, we give them a key (cur_decl) in the
dictionary. When the objects are replayed, the same value is passed in order to
add the right semantics.

Once the procedure is completed, the value of the string is added to the store
as the value of the identifier of the procedure.

Moreover, procedures are also called closures because they capture, i.e. close
the environment when the procedure is defined. At this exact time, we add the
value of the contextual environment to the store.

Once the procedure is called, the contextual environment is restored, identifiers
are bound to the parameters values and the procedure trace is replayed. This
algorithm also works for recursive calls.

Recursive calls might be infinite and can make the page crash. Consequently,
we must ensure that an infinite loop cannot occur. Therefore, we check that the
number of recursion does not reach a critical threshold.

54

6.3. FRONT-END

6.3 Front-end

The front-end of Glass Cat takes four items 4 (see Figure 6.4). This part requires
JavaScript/jQuery, HTML and CSS. Starting from glass_cat.js and rotating
clock-wise, we have (1) the output of the back-end (2) anim.js which is the
JavaScript for the animations on the website (for the states/stores and to start
the parser) (3) HTML/CSS codes to display the content of the website (4) Code
Mirror is a JavaScript editor that colorizes and indents codes dynamically [Hav14].

glass_cat.js anim.js

Code Mirror HTML/CSS

WEBSITE

Figure 6.4. Structure of the front-end of Glass Cat. Files are represented in rectangle
boxes and compilation or call to external programs are symbolized by circles.

As a reminder, Figure 6.5 shows the four buttons to control Glass Cat.

Figure 6.5. The four buttons to control Glass Cat.

Moreover, a more expressive graph is designed in Figure 6.6 to show interactions
between all these files.

Once the user pressed the EXECUTE button, anim.js asks glass_cat.js to
parse the input codes. At the end of this step, states are already computed waiting
to be displayed.

When the NEXT button is pressed, the stack is computed in glass_cat.js,
i.e. the store of each semantic statement is merged from the current point. At this
stage, there are a few items that need a specific treatment, e.g. the initialization
of a variable must erase the declaration of this variable and if it is a cell, the two
stores must change.

4Here we call it items as some of them are composed of many files (like Code Mirror and
HTML/CSS). Therefore, they are not written with a typewriter font.

55

6.3. FRONT-END

User HTML/CSS CodeMirror anim.js glass_cat.js

typing analyzing

colorizingdisplaying

pressing EXE asking JavaScript

asking content

returning content

asking the parser

returning states

unfreeze buttonsdisplaying

pressing NEXT asking JavaScript

asking the stack

returning stack

adding contentsdisplaying

pressing PREVIOUS asking JavaScript

changing contentsdisplaying

Figure 6.6. Sequence diagram displays a scenario from top to bottom, where a user type
some code and then the EXE button, the NEXT one and then PREVIOUS. Black boxes
represents computations steps. This figure shows, in a different way, how Glass Cat can be
transposed to the reference model for visualization (Figure 4.1).

On the other hand, pressing the PREVIOUS button does not require a call
to glass_cat.js, everything is done in anim.js. It calls a jQuery function to
animate the box and hide the old one.

56

Chapter 7

Evaluation

“Our greatest glory is not in never falling, but in rising
every time we fall.”

— Confucius

We implemented this thesis following the agile methodology. First, we spent a
lot of time looking for the best design, the most relevant part of the semantics to
show. Once we knew where we wanted to go, a minimal version of Glass Cat was
developed, i.e. limited to the creation of a variable and check if the semantics is
right. The next steps were to extend this basic version with a new concept of Oz.
Then we must check if the added concept works and if the old ones still work.

In this chapter, we present which subset of Oz is implemented and what kinds
of operations the users can do. Then, we evaluate the correctness of Glass Cat and
how we proceed to test it. Finally, we have a brief talk about how we can make it
even faster.

7.1 Subset of Oz

Re-implementing every concepts supported by Mozart in JavaScript might have
been a gargantuan work for a master’s thesis. Therefore it was decided to make
Glass Cat work only with the kernel language of Oz and especially the one seen
in the second-year bachelor in Civil Engineering at the Université catholique de
Louvain.

Table 7.1 shows the general kernel language of Oz with a check mark on the
right of each rule that works in Glass Cat. Half of the kernel language has been
implemented. However, every rule seen in the course LFSAB1402 except the thread
creation can be parsed.

57

7.2. CORRECTNESS

〈s〉 ::= skip Empty statement X

| 〈s〉1 〈s〉2 Statement sequence X

| local 〈x〉 in 〈s〉 end Variable creation X

| 〈x〉1 = 〈x〉2 Variable-variable binding X

| 〈x〉 = 〈v〉2 Value creation X

| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional X

| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching X

| {〈x〉 〈y〉1 ... 〈y〉n} Procedure application X

| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| {NewName 〈x〉} Name creation
| 〈y〉=!!〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value
| {NewCell 〈x〉 〈y〉} Cell creation X

| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange
| {IsDet 〈x〉 〈y〉} Boundness test

Table 7.1. The general kernel language of Oz (from [VRH04]) with a check mark next to
the statements that Glass Cat can parse.

7.2 Correctness

In order to verify that Glass Cat works well, we performed a lot of tests. Those
tests are based on the concept of functional correctness. For a specific input, we
first check visually that the output is correct. If it is good, we take the value of the
store and add it to the database for the tests. Once the test is run, it compares
the good value with the returned value.

The tester is presented on a web page where a user can add tests with their
expected result. Then all tests can be run individually or together. Figure 7.1 shows
test 60 which contains a procedure, a recursive procedure call and a condition.

We tried to make Glass Cat as modular as possible, i.e. when adding a new
rule, the rest of the system does not have to be changed. With this kind of test
we can ensure that it is still working on old tests even with a new version of the
interpreter.

A total of 62 tests have been implemented, but as there can be an infinity of
paths to tests, it can still be improved. Nevertheless, it covers each statement of
the kernel language defined in the previous section at least once.

58

7.3. EXECUTION TIME

Figure 7.1. A test inside the web page for the tests. Test 60 contains a procedure, a
recursive procedure call and a condition. Once the execute button is pressed, the tester
compares the right value of the store with the one produced with the actual version of
Glass Cat. If it matches, OK is displayed otherwise KO. Here the test did well in 2 ms.

7.3 Execution time

The first objective of a master’s thesis is to deliver a working tool before optimizing
it. Meanwhile, if the fans of the user’s computer start to blow while the parser
works, this is not a program that will be used.

We ran test 60 (Figure 7.1) with Google Chrome version 34 and it took 2ms to
parse it and it used 4.8 MB of JavaScript heap. Moreover, we tested Glass Cat on
Chrome 34, Firefox 29 and Safari 7.

Figure 7.3 shows a very strong positive correlation (correlation coefficient
according to the Pearson’s correlation equal to 0.77) between the number of
characters of the input and the time taken to parse it.

59

7.3. EXECUTION TIME

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

11

Number of characters in the input

T
im

e
in

m
s

Figure 7.2. Time to parse the code as a function of the number of characters in the input.
This graph is generated from the website to test Glass Cat without recursive tests. Codes
do not process the same task. All the tests were run 5 times and are displayed as red dots.
The blue line is a second-order interpolation.

There are some outliers in this graph (1) values of the first column because
they are the first to be generated 1, we can see that the time decreases at each test
for this first column, (2) between 200 and 300 characters there is a higher value at
test 30 but there is nothing particular at this time, a condition and a if-statement
(maybe the garbage collector cleaned the previous objects) (3) the highest values
are naturally the ones that correspond to test 42 with the longest code.

Figure 7.3 shows the time taken for the computation of the factorial, starting
with the factorial of 1 up to the factorial of 5. There is a huge bottleneck with
recursive calls as the time fits a fourth-order interpolation relative to the number of
procedure calls. It comes from the evaluation of the procedure calls which evaluates
two times one procedure call (first to create the semantics then to add it to the
node), so the last call is evaluated in Θ(N !) with N the number of recursive calls.

1See next paragraph to understand why.

60

7.4. OPTIMIZATIONS

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

Number of procedure calls

T
im

e
in

m
s

Figure 7.3. Time to parse the code as a function of the number of calls and recursive
calls in the procedure Fact going from factorial of 1 up to factorial of 5. All the tests are
displayed as red dots. The blue line is a fourth-order interpolation.

7.4 Optimizations

But as the time taken to evaluate a code increases almost linearly with the number
of characters and quadratically with recursive calls, we might want to optimise
the code and make it run faster. In [Bak12], we can find some good practices in
JavaScript like avoiding string concatenation and initializing instance variables
and class methods with the prototype keyword. This keyword avoids unnecessary
initialization each time the constructor is called and it can create only a single
function for an object, how many instances there are.

Undoubtedly, the first thing to do in order to optimize performances of a
JavaScript code is to remove every print in the console because it costs a lot.
Moreover, some tools can be used to make your JavaScript codes better like Google
Closure [Dev14] which:

• Removes white space : reducing the size in order to load faster.
• Changes variable names to shorter ones : reducing the size.
• Checks code : warning for illegal JavaScript operations.

61

7.4. OPTIMIZATIONS

When the back-end generates glass_cat.js, it also produces an optimized
version with Google Closure. Table 7.2 shows the differences between the two
outputs. We see that the optimized version has better performances than the
non-optimized version. By reducing the number of lines and characters, the size is
also reduced. On the small code, it takes roughly the same time but on the long
code, the optimized version is 15% faster than the non-optimized version.

Unfortunately, the optimized version does not resolve the bottleneck of recursive
calls except that it goes a little bit faster, the complexity does not change.

Number
of lines

Number
of char-
acters

Size
(KB)

Execution time
(small code)

Execution time
(long code)

Normal 3041 101627 102 ± 5ms ± 160ms
Optimized 149 68150 68 ± 4ms ± 140ms

Table 7.2. Comparison of the normal version of Glass Cat and the optimized version. The
small code corresponds to test 60 (338 lines with one recursive call) and the long code is
the computation of the factorial of 5 (470 lines with 5 recursive calls).

62

Chapter 8

Conclusions

“Everything has to come to an end, sometime.”

— L. Frank Baum, The Marvelous Land of Oz

While the Internet has been growing, education was confined to paper-and-pencil.
But now, education is changing and students can take university courses from their
home. Therefore, developing tools to learn via the Internet is really an actual topic.

However, how hard can it be to make a tool for education? First, it must be
attractive to involve students in the exercise. Nonetheless, this is nothing without
a background, a program that computes a function according to the input given by
the user. Present master’s thesis tried to answer that question in a structured way
for a tool that shows the semantics of Oz.

The initial step presented some concepts of the programming language. Espe-
cially, we looked at the kernel language up to the abstract machine to express the
formal semantics.

Then, we focused on the back-end, looking for a tool that can understand
and interpret the code the user just wrote. It was required to explain briefly the
theory of parsers. This lead us throughout the definition of grammars, lexical and
syntactic analysis. Therefore, we used a parser generator to create an interpreter
for Glass Cat with a grammar based on the kernel language of Oz. This is definitely
the most complex part of this thesis as it must be modelled on an existing language
while respecting its properties.

Later, we talked about the design. Based on papers and researches, we tried
to understand how to make the best visual programming tool in order to kindle
in student’s mind a desire to learn. We have been led to compare some visual
programming tools principally ones that are used with an educational aim. Thanks
to them, we built the design of Glass Cat. Taking care of being user-friendly and
scalable.

63

8.1. PERSPECTIVES AND LIMITATIONS

Since Glass Cat is an educational tool, the idea was to integrate it to an existing
platform. There is one at the INGI department, Pythia. Consequently, a succinct
explanation of this platform adds a more general context to this thesis.

After all, in the implementation part we explained the global structure of the
code and how Glass Cat came to life with the interpreter acting like a brain whose
face is the visualization part. We travelled through the code from the definition of
the grammar and its transformation into a parser creating objects and managing
errors. Then, we took a look at the human-machine interaction and the path of
the request inside the program.

Finally, we evaluated Glass Cat based on the objectives defined in the introduc-
tion. First, the global kernel language of Oz was reminded with check marks on
statements that were implemented. Second, we tested Glass based on functional
correctness with numerous input codes. Third, we checked its speed and the
memory used, making it as light as possible.

8.1 Perspectives and limitations

Finally, we are aware that Glass Cat is not perfect, it could have been more struc-
tured with a distinct split between the back-end and the front-end. Furthermore,
nodes could have been more generic, i.e. exactly the same processing for each node
and not some exceptions.

We can also point out that the recursion is not optimal and the number of calls
to replay a procedure increases in Θ(N !) with N the number of real calls to the
procedure in the student’s code.

Nevertheless, Glass Cat has already asked a lot of work but it can be extended
with some other tools. I tried to make a good documentation to make it survive
the final presentation of this master’s thesis. Above all, feedbacks can give other
ideas and improve it for understanding.

Extend the grammar The most important thing is to extend the grammar of
Glass Cat with most features from Oz, starting with threads.

Highlight the current state Instead of displaying a box for a state, we could
highlight the current state and the line popped from the stack. Making more space
for the store.

Errors Errors are raised by the parser, but Glass Cat could be extended in order
to act like a debugger, showing stores and states up to the error or a break point.

64

8.2. OPEN QUESTIONS

Display the scope of variables We can add many things to the website, e.g.
a area where we can check scopes of each variables.

A more descriptive semantics As we keep track of every type of statements,
we could imagine an area that displays the name of every semantics operation that
is performed.

Sharable URL If a student is stuck at a certain step, Glass Cat could generate
a short URL. This one re-opens Glass Cat with the same input code at the right
semantics step.

8.2 Open questions

During this master’s thesis a lot of choices were made. Therefore, we can wonder
how Glass Cat might have looked like if we took another path.

Glass Cat in a virtual machine Instead of re-implementing Oz in JavaScript,
we could have loaded a virtual machine on the server side with a customised version
of Mozart which can build semantics and give it back to the front-end. Is such a
choice better than the current version of Glass Cat?

Change the design In Chapter 4 we saw many tools that displays the memory.
Can Glass Cat be improved if we do not display semantics as defined steps but only
with a memory represented with boxes and references that evolves dynamically?

65

8.2. OPEN QUESTIONS

66

Appendices

67

Appendix A

Developers

This appendix describes the code of Glass Cat. If you want to extend it with a
new rule or a new functionality, this chapter is for you.

Glass Cat is available at http://pbouilliez.github.io/glass-cat/, then you choose
the developer version. You have access to the code and to the tests.

A.1 Installation of Jison

To generate a parser, install Jison for Node using npm [Car09].
I did it on a computer which runs on Linux Mint 15 Olivia (GNU/Linux

3.8.0-19-generic x86_64) with the following steps:

1. sudo apt-get install python-software-properties

2. sudo apt-get update

3. sudo apt-get install nodejs

4. curl https://npmjs.org/install.sh | sudo sh

5. npm -v (to check if it everything is ok)

6. npm install jison -g

7. git clone git://github.com/zaach/jison.git

A.2 Grammar

The complete grammar is defined in Listing A.1.

69

http://pbouilliez.github.io/glass-cat/

A.2. GRAMMAR

1

2 /* description : Parses end executes mathematical expressions . */
3

4 /* lexical grammar */
5 %lex
6

7 %s comment
8

9 %%
10

11 "%".* /* skip comments */
12 \s+ /* skip whitespace */
13

14 "~" { return ’~’;}
15

16 "{" { return ’EMBRACE ’;}
17 "}" { return ’UNBRACE ’;}
18

19 "true" { return ’TRUE_LITERAL ’;}
20 "false" { return ’FALSE_LITERAL ’;}
21 " NewCell " { return ’NEWCELL_LITERAL ’;}
22

23 "=<" { return ’OPERATOR_LESS_THAN_EQUAL ’;}
24 "<" { return ’OPERATOR_LESS_THAN ’;}
25 "==" { return ’OPERATOR_EQUAL ’;}
26 ">=" { return ’OPERATOR_GREATER_THAN_EQUAL ’;}
27 ">" { return ’OPERATOR_GREATER_THAN ’;}
28 "\=" { return ’OPERATOR_NOT_EQUAL ’;}
29

30 "*" { return ’*’;}
31 "div" { return "div ";}
32 "mod" { return "mod ";}
33 "-" { return ’-’;}
34 "+" { return ’+’;}
35 "/" { return ’/’;}
36 "(" { return ’(’;}
37 ")" { return ’) ’;}
38 "$" { return ’DOLLAR ’;}
39 "?" { return ’QUESTION_MARK ’;}
40 "=" { return ’OPERATOR_ASSIGNMENT ’;}
41 ":=" { return ’OPERATOR_CELL_ASSIGNMENT ’;}
42 ":" { return ’COLON ’;}
43 "@" { return ’OPERATOR_CELL_GET ’;}
44 "." { return ’OPERATOR_RECORD_GET ’;}
45

46 "skip" { return ’KEYWORD_SKIP ’;}
47 "nil" { return ’KEYWORD_NIL ’;}
48 "local" { return ’KEYWORD_LOCAL ’;}
49 "in" { return ’KEYWORD_IN ’;}
50 "end" { return ’KEYWORD_END ’;}
51 "if" { return ’KEYWORD_IF ’;}
52 "then" { return ’KEYWORD_THEN ’;}
53 "else" { return ’KEYWORD_ELSE ’;}

70

A.2. GRAMMAR

54 "case" { return ’KEYWORD_CASE ’;}
55 "of" { return ’KEYWORD_OF ’;}
56 "proc" { return ’KEYWORD_PROC ’;}
57 "[]" { return ’OPERATOR_BRACE ’;}
58

59

60 [0 -9]+["."]{1}[0 -9]+ { return ’FLOAT ’;}
61 [0 -9]+([0 -9]+) ?\b { return ’INTEGER ’;}
62 [A-Z][a-zA -Z0 -9_]* { return ’IDENTIFIER ’;}
63 "\"\"" { return ’STRING_LITERAL ’;}
64 "\""([^"]|{ BSL }) *"\"" { return ’STRING_LITERAL ’;}
65 [’]*[a-z0 -9\W][a-zA -Z0 -9]*[’]* { return ’LABEL ’;}
66

67

68 <<EOF >> { return ’EOF ’;}
69

70 /lex
71

72 /* operator associations and precedence */
73

74 %left ’+’ ’-’
75 %left ’*’ "div" ’/’
76 %right "mod"
77

78 %start instruction
79

80 %% /* language grammar */
81

82 instruction
83 : EOF
84 { throw new Error (" Did you forget to write something ?"); }
85 | variable_creation EOF
86 { var cu = new CompilationUnit (); $1. add_semantics (@1 ,

"\{\}" , 100); $1. generate_semantics (); cu.close (); return cu
; }

87 | KEYWORD_SKIP EOF
88 { var cu = new CompilationUnit (); var v = new

VariableDeclarator (’E’); v. add_semantics (’’, ’’, 99); v.
add_semantics (@1 , "\{\}" , 100); v. generate_semantics (); cu.
close (); return cu;}

89 ;
90

91 block
92 :
93 { $$=new Block (); }
94 | variable_creation block
95 { $$=new Block ();
96 if(!$2. isEmpty ()) {
97 $$. add_semantics (@1 , ’’, 4);
98 $2. add_semantics (@2 , ’’, 5);
99 }

100 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
101 }

71

A.2. GRAMMAR

102 | KEYWORD_SKIP block
103 { $$=new Block ();
104 do_skip ();
105 if(!$2. isEmpty ()) {
106 $$. add_semantics (@1 , ’’, 4);
107 $2. add_semantics (@2 , ’’, 5);
108 }
109 $$. eval_semantics ([], $2. get_semantics ());
110 }
111 | if_then_statement block
112 { $$=new Block ();
113 if(!$2. isEmpty ()) {
114 $$. add_semantics (@1 , ’’, 4);
115 $2. add_semantics (@2 , ’’, 5);
116 }
117 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
118 }
119 | if_then_else_statement block
120 { $$=new Block ();
121 if(!$2. isEmpty ()) {
122 $$. add_semantics (@1 , ’’, 4);
123 $2. add_semantics (@2 , ’’, 5);
124 }
125 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
126 }
127 | smth block
128 { $$=new Block ();
129 if($2. isEmpty ()) {
130 $1. add_semantics (’’, $1. get_value (), 2);
131 }
132 else {
133 $1. add_semantics (@2 , $1. get_value (), 2);
134 }
135 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
136 }
137 | case_of_statement block
138 { $$=new Block ();
139 if(!$2. isEmpty ()) {
140 $$. add_semantics (@1 , ’’, 4);
141 $2. add_semantics (@2 , ’’, 5);
142 }
143 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
144 }
145 | procedure_call block
146 { $$=new Block ();
147 if(!$2. isEmpty ()) {
148 $$. add_semantics (@1 , ’’, 4);
149 $2. add_semantics (@2 , ’’, 5);
150 }
151 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
152 }
153 ;
154

72

A.2. GRAMMAR

155 smth
156 : variable_initializer
157 { $$ = $1; }
158 | cell_initializer
159 { $$ = $1; }
160 | cell_getter
161 ;
162

163 /*** VARIABLE CREATION ***/
164

165 variable_creation
166 : variable_use KEYWORD_END
167 { $$=$1; $1. endScope (); }
168 ;
169

170 variable_use
171 : variable_decl block
172 { $$ = $1; $1. add_semantics (@2 , $1. getIdentifier (), 1); $1.

eval_semantics ($1. get_semantics (), $2. get_semantics ()); }
173 ;
174

175 variable_decl
176 : KEYWORD_LOCAL variable_creation_id KEYWORD_IN
177 { $$ = new VariableDeclarator ($2 , cur_decl); }
178 ;
179

180 variable_creation_id
181 : IDENTIFIER
182 { $$ = $1; }
183 ;
184

185 /*** VARIABLE INITIALIZATION ***/
186

187 variable_initializer
188 : variable_creation_id OPERATOR_ASSIGNMENT variable_assign
189 { $$ = new VariableInitializer ($1 , $3 , cur_decl); }
190 ;
191

192 variable_assign
193 : expression
194 ;
195

196 /*** CELL INITIALIZATION ***/
197

198 cell_initializer
199 : IDENTIFIER OPERATOR_CELL_ASSIGNMENT cell_assign
200 { $$ = new CellInitializer ($1 , $3 , cur_decl); }
201 ;
202

203 cell_assign
204 : expression
205 ;
206

73

A.2. GRAMMAR

207 cell_getter
208 : OPERATOR_CELL_GET IDENTIFIER
209 { $$ = get_cell_value ($2); }
210 ;
211

212 /*** IF THEN ***/
213

214 if_then_statement
215 : if_use KEYWORD_END
216 { $$ = $1; $1.endIf (); }
217 ;
218

219 if_use
220 : if_cond block
221 { $$ = $1; $1. set_block (@2 , 1); if($1. getCondition ()) { $1.

add_semantics (@2 , ’’, 4); $1. eval_semantics ($1. get_semantics (),
$2. get_semantics ());} }

222 ;
223

224 if_cond
225 : KEYWORD_IF IDENTIFIER KEYWORD_THEN
226 { $$ = new IfThen (new Identifier ($2), cur_decl); }
227 ;
228

229 /*** IF THEN ELSE ***/
230

231 if_then_else_statement
232 : if_use_else KEYWORD_END
233 { $1.endIf (); }
234 ;
235

236 if_use_else
237 : if_use KEYWORD_ELSE block
238 { $$ = $1; $1. set_block (@3 , 2); if(! $1. getCondition ()) {

cur_condition [cur_id -1]= true; $1. add_semantics (@3 , ’’, 4); $1.
eval_semantics ($1. get_semantics (), $3. get_semantics ());} }

239 ;
240

241

242 /*** CASE OF ***/
243

244 case_of_statement
245 : case_use KEYWORD_ELSE block KEYWORD_END
246 { $$ = $1; $1. set_block (@3 , 2); if(!$1. is_it_good ()){$1.

add_semantics (@3 , ’’, 5); $1. eval_semantics ($1. get_semantics (),
$3. get_semantics ());} $1.endIf (); }

247 ;
248

249 case_use
250 : case_cond block
251 { $$ = $1; $1. set_block (@2 , 1); if($1. is_it_good ()){$1.

add_semantics (@2 , $1. getIdentifier (), 5); $1. eval_semantics ($1
. get_semantics (), $2. get_semantics ());} $$. endScope (); }

74

A.2. GRAMMAR

252 ;
253

254 case_cond
255 : case_eval KEYWORD_THEN
256 ;
257

258 case_eval
259 : KEYWORD_CASE IDENTIFIER KEYWORD_OF pattern
260 { $$ = new Case($2 , $4 , cur_decl); }
261 ;
262

263 pattern
264 : IDENTIFIER
265 { $$ = new Pattern_Identifier ($1); }
266 | LABEL ’(’ records_list ’)’
267 { $$ = new Record ($1 , $3); }
268 ;
269

270

271 /*** PROCEDURE ***/
272

273 formal_parameter_list
274 : formal_parameter
275 { $$ = [$1]; cur_ce = get_ce (); cur_CE = jQuery . extend (true , {},

identifiers_list); cur_proc = ""; }
276 | formal_parameter_list formal_parameter
277 { $$ = $1; $$.push($2); cur_ce = get_ce (); cur_CE = jQuery . extend

(true , {}, identifiers_list); cur_proc = ""; }
278 ;
279

280 formal_parameter
281 : IDENTIFIER
282 { $$ = new Identifier ($1); }
283 | QUESTION_MARK IDENTIFIER
284 { $$ = new ReturnIdentifier ($2); }
285 ;
286

287 formal_parameter_list_call
288 : formal_parameter_call
289 { $$ = [$1]; }
290 | formal_parameter_list_call formal_parameter_call
291 { $$ = $1; $$.push($2); }
292 ;
293

294 formal_parameter_call
295 : IDENTIFIER
296 { $$ = new Identifier ($1); }
297 ;
298

299 procedure_call
300 : EMBRACE IDENTIFIER formal_parameter_list_call UNBRACE
301 { $$ = new ProcedureCall ($2 , $3 , @1 , @4 , cur_decl); }
302 ;

75

A.2. GRAMMAR

303

304 /*** EXPRESSION ***/
305

306 expression_case
307 : IDENTIFIER
308 { $$ = get_identifier ($1); }
309 ;
310

311 records_list
312 : records_entry
313 { $$ = [$1]; }
314 | records_list records_entry
315 { $$ = $1; $$.push($2); }
316 ;
317

318 records_entry
319 : LABEL COLON IDENTIFIER
320 { $$ = new Record_entry ($1 , new Identifier ($3)); }
321 | INTEGER COLON IDENTIFIER
322 { $$ = new Record_entry ($1 , new Identifier ($3)); }
323 ;
324

325 expression
326 : expression1
327 { $$ = new Expression ($1); }
328 | ’(’ expression ’)’
329 {$$ = new Parenthesis ($2);}
330 | KEYWORD_PROC EMBRACE DOLLAR formal_parameter_list UNBRACE block

KEYWORD_END
331 { $$ = new Procedure ($4 , @1 , @7 , @6); $$. eval_semantics ([],$6

. get_semantics ()); }
332 | IDENTIFIER
333 { $$ = new Identifier ($1); }
334 | EMBRACE NEWCELL_LITERAL IDENTIFIER UNBRACE
335 { $$ = new Cell($3); }
336 | TRUE_LITERAL
337 { $$ = new Parenthesis (new Expression (new Condition (new

Expression (4) ,new Expression (4) ,’==’))); }
338 | FALSE_LITERAL
339 { $$ = new Parenthesis (new Expression (new Condition (new

Expression (4) ,new Expression (4) ,’!=’))); }
340 | LABEL ’(’ records_list ’)’
341 { $$ = new Record ($1 , $3); }
342 | KEYWORD_NIL
343 { $$ = new Keyword_nil ($1);}
344 | STRING_LITERAL
345 { $$ = new String_literal ($1); }
346 ;
347

348 expression1
349 : expression ’+’ expression
350 { $$ = new MathExp ($1 ,$3 ,$2); }
351 | expression ’-’ expression

76

A.2. GRAMMAR

352 {$$ = new MathExp ($1 ,$3 ,$2); }
353 | expression ’*’ expression
354 {$$ = new MathExp ($1 ,$3 ,$2); }
355 | expression "div" expression
356 {$$ = new MathExp ($1 ,$3 ,$2); }
357 | expression "mod" expression
358 {$$ = new MathExp ($1 ,$3 ,$2); }
359 | expression ’/’ expression
360 { $$ = new MathExp ($1 ,$3 ,$2); }
361 | INTEGER OPERATOR_LESS_THAN_EQUAL exp
362 { $$ = new Condition (new Expression (Number ($1)), $3 , ’<=’); }
363 | IDENTIFIER OPERATOR_LESS_THAN_EQUAL exp
364 { $$ = new Condition (new Identifier ($1), $3 , ’<=’); }
365 | FLOAT OPERATOR_LESS_THAN_EQUAL exp
366 { $$ = new Condition (new Expression (Number ($1)), $3 , ’<=’); }
367 | INTEGER OPERATOR_LESS_THAN exp
368 { $$ = new Condition (new Expression (Number ($1)), $3 , ’<’); }
369 | IDENTIFIER OPERATOR_LESS_THAN exp
370 { $$ = new Condition (new Identifier ($1), $3 , ’<’); }
371 | FLOAT OPERATOR_LESS_THAN exp
372 { $$ = new Condition (new Expression (Number ($1)), $3 , ’<’); }
373 | INTEGER OPERATOR_EQUAL exp
374 { $$ = new Condition (new Expression (Number ($1)), $3 , ’==’); }
375 | IDENTIFIER OPERATOR_EQUAL exp
376 { $$ = new Condition (new Identifier ($1), $3 , ’==’); }
377 | FLOAT OPERATOR_EQUAL exp
378 { $$ = new Condition (new Expression (Number ($1)), $3 , ’==’); }
379 | INTEGER OPERATOR_GREATER_THAN_EQUAL exp
380 { $$ = new Condition (new Expression (Number ($1)), $3 , ’>=’); }
381 | IDENTIFIER OPERATOR_GREATER_THAN_EQUAL exp
382 { $$ = new Condition (new Identifier ($1), $3 , ’>=’); }
383 | FLOAT OPERATOR_GREATER_THAN_EQUAL exp
384 { $$ = new Condition (new Expression (Number ($1)), $3 , ’>=’); }
385 | INTEGER OPERATOR_GREATER_THAN exp
386 { $$ = new Condition (new Expression (Number ($1)), $3 , ’>’); }
387 | IDENTIFIER OPERATOR_GREATER_THAN exp
388 { $$ = new Condition (new Identifier ($1), $3 , ’>’); }
389 | FLOAT OPERATOR_GREATER_THAN exp
390 { $$ = new Condition (new Expression (Number ($1)), $3 , ’>’); }
391 | INTEGER OPERATOR_NOT_EQUAL exp
392 { $$ = new Condition (new Expression (Number ($1)), $3 , ’!=’); }
393 | IDENTIFIER OPERATOR_NOT_EQUAL exp
394 { $$ = new Condition (new Identifier ($1), $3 , ’!=’); }
395 | FLOAT OPERATOR_NOT_EQUAL exp
396 { $$ = new Condition (new Expression (Number ($1)), $3 , ’!=’); }
397 | ’~’ expression %prec ’*’
398 {$$ = new Integer (- Number (yytext));}
399 | INTEGER
400 { $$ = new Integer (Number (yytext)); }
401 | FLOAT
402 { $$ = new Float(Number (yytext)); }
403 | PI
404 {$$ = Math.PI;}

77

A.3. HOW TO ADD A NEW RULE?

405 | IDENTIFIER OPERATOR_RECORD_GET LABEL
406 { $$ = new Get_entry_record ($1 , $3); }
407 | IDENTIFIER OPERATOR_RECORD_GET INTEGER
408 { $$ = new Get_entry_record ($1 , $3); }
409 | OPERATOR_CELL_GET IDENTIFIER
410 { $$ = new Get_cell_value ($2); }
411 ;
412

413 exp
414 : INTEGER
415 { $$ = new Expression (Number (yytext)); }
416 | IDENTIFIER
417 { $$ = new Identifier ($1); }
418 | FLOAT
419 { $$ = new Expression (Number (yytext)); }
420 ;

Listing A.1. Grammar of Glass Cat for the kernel language of Oz written in oz.jison.

A.3 How to add a new rule?

Glass Cat can construct the result directly if there is no procedure, but if there
is one, it must first keep track of every steps inside the procedure. This is why,
working with procedures is a little bit tricky but I tried to make it easy enough to
add new rules. This section describes the few steps that must be done if you want
to add a new rule, e.g. my_rule in the grammar.

A.3.1 oz.jison

Lexer

Make sure that tokens you need in your new rule are defined in the lexical grammar
for the lexer, otherwise, add them. Take care that the first character of your token
is not yet the first of another token, otherwise the first one to be defined will be
chosen even if it is not the right one. E.g. if the token : (COLON) is defined, it
must me after := (OPERATOR_CELL_ASSIGNMENT), the scanner sees a colon but the
:= cannot match with the second one.

Statement rules

If the rule you want to add is one that can be followed by another statement, add
it in the block section with the code defined in A.2 which is as generic as possible,
i.e. you have to change my_rule at line 1 with the name of your new rule.

1 | my_rule block
2 { $$=new Block ();

78

A.3. HOW TO ADD A NEW RULE?

3 if(!$2. isEmpty ()) {
4 $$. add_semantics (@1 , ’’, 4);
5 $2. add_semantics (@2 , ’’, 5);
6 }
7 $$. eval_semantics ($1. get_semantics (), $2. get_semantics ());
8 }

Listing A.2. Add a new rule in a statement.

The first line of this code says that my_rule is followed by another block, line 2
means that the result of this sentence ($$) is a new Block() to which we add a new
semantics (line 4) add_semantics = function(state_loc, stack, type) with
the state localisation state_loc given by @1, the stack does not have a new entry
’’ and the type is an integer which has a value for each rule 1. Line 7 evaluates
semantics as explained in Section 2.2.

Rule definition

Add your rule definition according to the mid-rule property defined in Listing 3.6
if you need to do something before the end of the sentence. Listing A.3 shows an
example for the variable initialization.

1 variable_initializer
2 : variable_creation_id OPERATOR_ASSIGNMENT variable_assign
3 { $$ = new VariableInitializer ($1 , $3 , cur_decl); }
4 ;
5

6 variable_assign
7 : expression
8 ;

Listing A.3. Define a new rule in the grammar (here adding a variable initializer).

Let us have a look at this code, we are getting used to the first line which is the
name of the rule. Line 3 is by far the most interesting as others are grammar
sentences. The third line means that the result of this sentence is a new object which
takes the variable_creation_id, variable_assign and the cur_decl variable as
parameter. The latter is employed in procedures in order to retrieve the semantics
of the current sentence as we will see in the following steps.

1Actually, only the value 2 is reserved for an initialization because it means that another node
in the stack must be skipped in order to browse only the identifier and its value and not the
identifier alone when it was created.

79

A.3. HOW TO ADD A NEW RULE?

A.3.2 ast_nodes.js

Global variables

While constructing AST nodes, we must be able to know a lot of things on what is
happening, e.g. the identifiers that are declared, which one are cells. . . .

Every global variable is enumerated and explained in the bullet list below.

• var identifiers_list = {}: Dictionary of declared identifiers (in their
scope)

• var cells_list = new Array(): List of declared cells identifiers (in their
scope)

• var identifiers_nbr = {}: Dictionary of identifiers and their number of
declaration

• var cur_condition = {}: Dictionary of conditions
• cur_condition[0] = true;
• var proc = new Array(): List of procedures
• var cur_proc = "": Stores everything that happens while parsing and

executing
• var cur_id = 1: Identifier of the current IF THEN condition
• var state_decl = new Array(): List of states
• var cur_decl = 0: counter of the number of declaration (used with

state_decl)

Create AST nodes

When the parser has found the correct sentence it applies the operation defined
inside the brackets which is a new object in Glass Cat.

This is mandatory for the new object to take as argument cur_decl.

1 var VariableInitializer = function (identifier ,value , cur_decl_local){
2 this.type = ’VariableInitializer ’;
3 this. identifier = identifier ;
4 this.value = value;
5 this. semantic = new Array ();
6 this. decl_nbr = cur_decl_local ;
7 cur_decl ++;
8

9 /* MORE CODE */
10 };

Listing A.4. Define a new AST node.

80

A.3. HOW TO ADD A NEW RULE?

Every parameter must be put as a this variable to be accessible to parent calls.
In order to be generic, a new node must have all the this variables which appears
in the Listing A.4.

Moreover, if you use a reference to an identifier, you have to be sure that
it is the last one created in the current scope. This can be done with a call to
get_last(id).

If you have to add more methods to this object, [Bak12] recommends to use
the keyword prototype to define class methods in ordrer to minimize the size of
the memory used.

A.3.3 Working with procedures

When you add a new rule, it must work even if there are procedures in the code.
Therefore, we must keep track of everything that happens while the procedure is
created and stored in a variable.

The global variable cur_proc contains a string of everything in the current
procedure. When the keyword end is met at the end of the procedure definition,
the cur_proc variable is stored in an array which key is the name of the procedure
proc[id] then it is reset. When the procedure is called, the entry which corresponds
to the name of the procedure is evaluated, i.e. the procedure is replayed.

Additionally, we have to add a new semantics for this function (lines 5-7). As this
part is explained in the next section, the only thing you have to understand by now
is that the state of the sentence must be stored in a global variable (state_decl)
as when the function is replayed, new objects are created but do not have the power
of the parser to add semantics except for the store.

Listing A.5 shows how we can add a new call in cur_proc.

1 cur_proc += "new Case (’"+ identifier +"’, "+ JSON. stringify (pattern)
+" ,"+ cur_decl_local +") ;";

2

3 cur_proc += "if(is_good_pattern (’"+ identifier +"’,"+ JSON. stringify (
pattern)+")){";

4

5 if(typeof state_decl [this. cur_decl] != ’undefined ’) {
6 cur_proc += "this. add_semantics ("+ JSON. stringify (state_decl [this.

cur_decl])+",’’,7) ;";
7 }

Listing A.5. Add a new call in cur_proc in order to replay it when a procedure is called .

81

A.4. HOW TO ADD SEMANTICS?

A.4 How to add semantics?

Semantics is added to each object by the parser simply with
the function add_semantics called on the object you created, e.g.
$1.add_semantics(@2, ’’, 4). Listing A.6 shows the content of this
function for the Block object but it is the same everywhere.

1 Block. prototype . add_semantics = function (state_loc , stack , type) {
2 var sem = new Object ();
3 sem. state_loc = state_loc ;
4 sem.stack = stack;
5 sem.type = type;
6 this. semantic .push(sem);
7 };

Listing A.6. Add semantics to an object.

The function takes as parameters the state location in the format of the value
given by @n in Jison, this is an object which contains information about the location
in the code (see Listing A.7):

1 {" first_line ":1 ," last_line ":6 ," first_column ":0 ," last_column ":3}

Listing A.7. Content of a state_loc.

The stack parameter is a string to add to the stack and the type an integer to
know which operation adds semantics.

As explained in Chapter 6, we must evaluate the parse tree in a specific
order (right, left, parent) to browse the semantics. This is done at each
“root” note, i.e. once there is a block in the sentence. So you have to
add a $1.eval_semantics($1.get_semantics(), $2.get_semantics()) in the
parser.

A.4.1 Working with procedures

In procedures, the parser is not there any more to add the right semantics so we
have to store it in a global variable with the function set_loc. This method adds
a new entry inside state_decl with the key set at cur_decl. When there is a
procedure call, it knows to which state it corresponds and can browse it.

Moreover, we can now explain the code which was first presented in Listing A.5
and reminded in Listing A.8.

82

A.5. ADD TESTS

1 if(typeof state_decl [this. cur_decl] != ’undefined ’) {
2 cur_proc += "this. add_semantics ("+ JSON. stringify (state_decl [this.

cur_decl])+",’’,7) ;";
3 }

Listing A.8. Add semantics in procedures.

Once the state location is defined (after that the procedure has been parsed
and so at the first call), semantics can be added.

A.5 Add tests

1. Open ’js/glass_cat.js’ and add the following lines at the end of
generate_semantics (below cnt_exe++;):

1 }
2 a = state.split(" </p>").join("\\n");
3 a = a.split("<p>").join("");
4 console .log(" add_test (’"+a. substring (0,a.length -2)+"’, ’"+

JSON. stringify (sem)+" ’);");
5 }

Listing A.9. Capture the store of a code to create a new test.

2. Load ’users/index-test.html’ and write your code then press Execute. Open
the console and copy the text from add_test to the end of the string.

3. Paste this string at the end of ’js/anim_dev.js’.

83

A.5. ADD TESTS

84

Appendix B

Users

Welcome in Glass Cat ! This chapter explains the different areas you can see on
the website and codes you can type in.

Glass Cat is available at http://pbouilliez.github.io/glass-cat/, then you choose
the user version.

B.1 A brief tour

The website is captured in Figure B.1.
There are many areas, each of them corresponds to a number:

1. A menu: access code examples, information about the author and Glass Cat.
2. A textarea: this is where you can type your Oz kernel language.
3. A program control: use to manage steps of the semantics (previous, next and

execute to start parsing, GO TO step is a plus as the user can go quicker to
a specified step).

4. States: display the states from right to left.
5. Stores (single-assignment and cell store): display the stores (up is the single-

assignment one, down is the cell store).

Concretely if you want to use Glass Cat:

1. Write your code in the textarea (number 2).
2. Click on EXECUTE, if your code is correct, no error appears. Otherwise you

will see an explanation of why Glass Cat cannot execute your code.
3. Click on NEXT to see the next semantics statement.
4. Click on PREVIOUS to go back on the previous one.
5. Click on GO TO if you want to go to a specific step.

85

http://pbouilliez.github.io/glass-cat/

B.2. WHAT CAN YOU DO?

Figure B.1. Design of Glass Cat.

B.2 What can you do?

Glass Cat can only understand a part of the Oz kernel language. Therefore, you
have to respect some rules.

Keywords

Identifiers Identifiers must start with a capital letter, followed by lower case,
capital letter or numbers but cannot have an underscore in it. The following regex
defines an identifier.

[A-Z][a-zA-Z0-9]*

Strings Strings must be surrounded by " ".

Variable declaration It must be written:

local X in 〈s〉 end

You cannot define more than one identifier at a time.

86

B.2. WHAT CAN YOU DO?

Variable initializer It must be written:

X = Y
X = Y+Z
X = Y+1
X = 1+1

You cannot define more than 2 items in an addition.

Records It must be written:

X = ’|’(1:X1 2:X2 3:X3)
X = ’#’(a:X1 2:X2 b:X3)

X = person(age:X1 sex:X2)

The label can be something between ’ ’ or a string starting with a lower case.
Features must be integers or a string starting with a lower case.

Condition It must be written:

X = (Y == Z)
X = (4 == Z)
X = (Y == 4)
X = (4 == 4)

X = true
X = false

It must me surrounded by parenthesis.

The if statement It must be written:

if 〈x〉 then 〈s〉1 else 〈s〉2 end

The identifier 〈x〉 must be a condition.

Pattern matching It must be written:

case 〈x〉 of person(d:D) then 〈s〉1 else 〈s〉2 end
case 〈x〉 of D then 〈s〉1 else 〈s〉2 end

It can take records and identifiers as pattern.

87

B.2. WHAT CAN YOU DO?

Procedures It must be written:

Y = proc{$ X Z}
Y = proc{$ X ?R}

It must be anonymous procedures and if there are returned values, they must be
written with a ? preceding them.

88

BIBLIOGRAPHY

Bibliography

[Bak12] Gregory Baker. Optimizing javascript code. https://developers.google.
com/speed/articles/optimizing-javascript, 2012. [Online; accessed 15-
May-2014].

[Bau13] L Frank Baum. The Patchwork Girl of Oz. Courier Dover Publica-
tions, 2013.

[Byn10] Mathias Bynens. Jison vs. peg.js. http://jsperf.com/jison-vs-peg-js,
2010. [Online; accessed 20-October-2013].

[Car09] Zach Carter. Jison. http://zaach.github.io/jison/, 2009. [Online;
accessed 10-October-2013].

[Car13] Zach Carter. Jison - github (mid-rules). https://github.com/zaach/
jison/issues/173, 2013. [Online; accessed 26-February-2014].

[CBR14] Sébastien Combéfis, Adrien Bibal, and Peter Van Roy. Recasting a
traditional course into a MOOC by means of a SPOC. In Proceedings
of the European MOOCs Stakeholders Summit 2014, pages 205–208,
February 2014.

[CIAD12] Bill Campbell, Swami Iyer, and Bahar Akbal-Delibas. Introduction
to Compiler Construction in a Java World. CRC Press, 2012.

[CLCdSM12] Sébastien Combéfis and Vianney Le Clément de Saint-Marcq. Teach-
ing programming and algorithm design with pythia, a web-based
learning platform. Olympiads in Informatics, 6, 2012.

[CMS99] Stuart K Card, Jock D Mackinlay, and Ben Shneiderman. Readings in
information visualization: using vision to think. Morgan Kaufmann,
1999.

[Dev14] Google Developers. Closure compiler. https://developers.google.com/
closure/compiler/, 2014. [Online; accessed 15-May-2014].

[Die07] Stephan Diehl. Software Visualization. Springer, 2007.

89

https://developers.google.com/speed/articles/optimizing-javascript
https://developers.google.com/speed/articles/optimizing-javascript
http://jsperf.com/jison-vs-peg-js
http://zaach.github.io/jison/
https://github.com/zaach/jison/issues/173
https://github.com/zaach/jison/issues/173
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/

BIBLIOGRAPHY

[For14] Bryan Ford. The packrat parsing and parsing expression grammars
page. http://bford.info/packrat/, 2014. [Online; accessed 20-May-
2014].

[FSF12a] Inc. Free Software Foundation. Bison - GNU parser generator. http:
//www.gnu.org/software/bison/, 2012. [Online; accessed 20-February-
2014].

[FSF12b] Inc. Free Software Foundation. Bison - GNU parser gen-
erator. http://www.gnu.org/software/bison/manual/html_node/
Table-of-Symbols.html, 2012. [Online; accessed 21-February-2014].

[GBWS11] Roger Gajraj, Margaret Bernard, Malcolm Williams, and Lenand-
lar Singh. Transforming source code examples into programming
tutorials. In ICCGI 2011, The Sixth International Multi-Conference
on Computing in the Global Information Technology, pages 160–164,
2011.

[GMT+05] Paul Gries, Volodymyr Mnih, Jonathan Taylor, Greg Wilson, and
Lee Zamparo. Memview: A pedagogically-motivated visual debugger.
In Frontiers in Education, 2005. FIE’05. Proceedings 35th Annual
Conference, pages S1J–11. IEEE, 2005.

[Guo13] Philip J Guo. Online python tutor: Embeddable web-based program
visualization for CS education. In Proceeding of the 44th ACM
technical symposium on Computer science education, pages 579–584.
ACM, 2013.

[Hav14] Marijn Haverbeke. Code mirror. http://codemirror.net/, 2014. [Online;
accessed 15-February-2014].

[Hel09] Juha Helminen. Jype–an education-oriented integrated program visu-
alization, visual debugging, and programming exercise tool for python.
Master’s thesis, Department of Computer Science and Engineering,
Helsinki University of Technology, 2009.

[Hun02] Christopher D Hundhausen. Integrating algorithm visualization
technology into an undergraduate algorithms course: ethnographic
studies of a social constructivist approach. Computers & Education,
39(3):237–260, 2002.

[KP05] Caitlin Kelleher and Randy Pausch. Lowering the barriers to pro-
gramming: A taxonomy of programming environments and languages
for novice programmers. ACM Computing Surveys (CSUR), 37(2):83–
137, 2005.

[Lev09] John Levine. Flex & bison. O’Reilly Media, Inc., 2009.

90

http://bford.info/packrat/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/manual/html_node/Table-of-Symbols.html
http://www.gnu.org/software/bison/manual/html_node/Table-of-Symbols.html
http://codemirror.net/

BIBLIOGRAPHY

[Maj10] David Majda. Peg.js. http://pegjs.majda.cz/, 2010. [Online; accessed
15-October-2013].

[Mig14] Matt Might. The language of languages. http://matt.might.net/
articles/grammars-bnf-ebnf/, 2014. [Online; accessed 14-May-2014].

[MMC02] Jonathan I Maletic, Andrian Marcus, and Michael L Collard. A task
oriented view of software visualization. In Visualizing Software for
Understanding and Analysis, 2002. Proceedings. First International
Workshop on, pages 32–40. IEEE, 2002.

[MMSBA04] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari.
Visualizing programs with jeliot 3. In Proceedings of the working
conference on Advanced visual interfaces, pages 373–376. ACM, 2004.

[Nel14] Randal C. Nelson. Context-free grammars. http://www.cs.rochester.
edu/~nelson/courses/csc_173/grammars/cfg.html, 2014. [Online; ac-
cessed 14-May-2014].

[Nor08] Chris Northwood. Lexical and syntax analysis of programming lan-
guages. http://www.pling.org.uk/cs/lsa.html, 2008. [Online; accessed
14-May-2014].

[NRA+02] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann,
Rudolf Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi,
Myles McNally, Susan Rodger, et al. Exploring the role of visual-
ization and engagement in computer science education. In ACM
SIGCSE Bulletin, volume 35, pages 131–152. ACM, 2002.

[Pos12] Jan Paul Posma. jsdare: a new approach to learning programming.
PhD thesis, University of Oxford, 2012.

[Pro08] The Flex Project. flex: The fast lexical analyzer. http://flex.
sourceforge.net/, 2008. [Online; accessed 14-May-2014].

[RLKS08] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski.
Effectiveness of program visualization: A case study with the ville
tool. Journal of Information Technology Education, 7, 2008.

[S+12] Juha Sorva et al. Visual program simulation in introductory pro-
gramming education. 2012.

[SJR+13] Piotr Sobieski, Christine Jacqmot, Benoît Raucent, Pascale Wouters,
Jean-Marc Braibant, and Vincent Wertz. Dynamique des groupes –
APP0, 2013.

[SK] Jorma Sajaniemi and Marja Kuittinen. Planani: A program animator
based on the roles of variables.

91

http://pegjs.majda.cz/
http://matt.might.net/articles/grammars-bnf-ebnf/
http://matt.might.net/articles/grammars-bnf-ebnf/
http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
http://www.pling.org.uk/cs/lsa.html
http://flex.sourceforge.net/
http://flex.sourceforge.net/

BIBLIOGRAPHY

[Uni11] Jive. http://www.cse.buffalo.edu/jive/, 2011. [Online; accessed March
2014].

[VR09] Peter Van Roy. Programming paradigms for dummies: What ev-
ery programmer should know. New Computational Paradigms for
Computer Music, page 9, 2009.

[VR11] Peter Van Roy. Nsp. http://www.info.ucl.ac.be/~pvr/
VanRoyHorizonsVol2.pdf, 2011. [Online; accessed March 2014].

[VR12] Peter Van Roy. LFSAB1402 - informatique 2, 2012.

[VRH04] Peter Van-Roy and Seif Haridi. Concepts, techniques, and models of
computer programming. MIT press, 2004.

[Wik13] Wikipedia. Glass cat. http://en.wikipedia.org/wiki/Glass_Cat, 2013.
[Online; accessed July 2013].

[Wik14a] Wikipedia. Comparison of parser generators — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/wiki/Comparison_of_parser_
generators, 2014. [Online; accessed 13-May-2014].

[Wik14b] Wikipedia. Parsing — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Parse, 2014. [Online; accessed 14-May-2014].

92

http://www.cse.buffalo.edu/jive/
http://www.info.ucl.ac.be/~pvr/VanRoyHorizonsVol2.pdf
http://www.info.ucl.ac.be/~pvr/VanRoyHorizonsVol2.pdf
http://en.wikipedia.org/wiki/Glass_Cat
http://en.wikipedia.org/wiki/Comparison_of_parser_generators
http://en.wikipedia.org/wiki/Comparison_of_parser_generators
http://en.wikipedia.org/wiki/Parse
http://en.wikipedia.org/wiki/Parse

	Introduction
	Objectives
	Structure of this thesis
	Why Glass Cat?

	Oz
	The kernel language of Oz
	Browser
	The declarative model
	The declarative model with explicit state
	The data-driven concurrent model

	The semantics of Oz
	The abstract machine
	Operations
	Declarative variables vs. dataflow variables
	Examples of execution
	Garbage Collector

	Interpreter
	Concepts of parsing a language
	Define grammars
	Lexical analysis (tokenizing)
	Syntactic analysis

	Parser generators
	Bison
	Jison
	PEG.js
	Comparison

	Work with Jison
	Lexical analysis
	Precedence
	Define a new rule

	Visual Programming
	Definition
	A reference model for visualization
	Classification
	Visual representation in education
	What to see?
	Improve the student's engagement

	A brief presentation of some visual programs
	JIVE
	Memview
	PlanAni
	CSmart
	ViLLE
	Python online tutor
	Jeliot 3
	Summary

	Design Choices
	Goals
	Interaction
	Scalability

	Pythia
	The Pyhia platform
	Pythia and the edX platform
	Integration of Glass Cat

	Implementation
	Structure of the program
	Back-end
	Parser
	Parse tree nodes
	Semantics
	Procedures

	Front-end

	Evaluation
	Subset of Oz
	Correctness
	Execution time
	Optimizations

	Conclusions
	Perspectives and limitations
	Open questions

	Appendices
	Developers
	Installation of Jison
	Grammar
	How to add a new rule?
	oz.jison
	ast_nodes.js
	Working with procedures

	How to add semantics?
	Working with procedures

	Add tests

	Users
	A brief tour
	What can you do?

	Bibliography

