Université catholique de Louvain
Ecole Polytechnique de Louvain
Pole d’ingénierie informatique

Extending Pythia with stuctural source code checks

for Java
Author : Steven An Master’s thesis submitted for the
Promoters : Kim Mens Master in Computer Science
Sébastien Combéfis option Artificial Intelligence
Reader : Virginie Van den Schrieck

2013-2014

Acknowledgements

I would like to thank my promoters Kim Mens and Sébastien Combéfis for their help, avail-
ability and constructive feedback through the whole year. Thanks to all my friends and family
for their support.

Table of contents

1 Introduction

4.2.2 Ease of use
4.2.3 Conclusion

1.1 Context e
1.2 Problem e
1.3 Motivationo e
1.4 Objectives L
1.5 Approach
1.6 Contributions
1.7 Roadmap o . o e
2 Background
2.1 Analysis tools
2.1.1 Findbugs e
2.1.2 Checkstyle
2.1.3 PMD . . .
2.1.4 Other tools that worth to be mentioned
2.2 Pythia o
2.2.1 A platform for students and teachers
2.2.2 The architecture of Pythia.
3 Related work
3.1 Project Euler
3.2 RubyMonk
3.3 Try Python o .
3.4 Code School e e
3.5 Remarks regarding Pythia oo oL L
4 Problem statement
4.1 Functional checks and good coding checks
4.1.1 Functional checks oo
4.1.2 Good coding checks oL o
4.1.3 The importance of using coding checks
4.2 Comparison between Java bytecode and AST approaches
4.2.1 EXpPressiveness e e e

11
21
22
25
25
29

31
31
33
35
37
39

41
41
41
41
42
43
43
43
43

5 Implementation

5.1 Using Checkstyle o
5.2 Extending Pythia Lo o
5.2.1 Defining an environment
5.2.2 Writingatask L
5.2.3 Theserver part e
5.2.4 Remarks regarding the integration of our checks
5.2.5 Teachers interactions with Pythia

6 Validation

6.1 First experiment L L e
6.1.1 Methodology
6.1.2 Theexercise.
6.1.3 A quick survey
6.1.4 Conclusion

6.2 Second experiment: Testing Checkstyle ourselves
6.2.1 Theexercise. e
6.2.2 Our implementation L oo
6.2.3 The analysis of Checkstyle.
6.24 Remarks.
6.2.5 Threats tovalidity Lo
6.2.6 Conclusion

6.3 Third experiment
6.3.1 The process of making an exercise
6.3.2 The Poker exercise
6.3.3 Configure the checks
6.3.4 Results e
6.3.5 Conclusion
6.3.6 Threats to validity Lo

6.4 Conclusion of the experiments

7 Conclusion

7.1 Summary of thiswork
7.2 Limitations and potential solutions

7.3 Future work
7.4 Final words

8 Bibliography

45
45
45
46
46
46
50
o1

52
52
52
93
63
67
69
69
70
71
72
72
72
73
73
76
81
83
84
84
85

86
86
87
88
89

90

Chapter 1

Introduction

1.1 Context

Pythia is a platform that allows teachers to share their exercises online. The main idea behind
it is to make projects and homework submissions as well as corrections automatic. Students
can submit their work as soon as it is done and then it is forwarded to the teachers. Since the
code is uploaded on the platform, it can automatically be checked by implemented checkers.
Students can then correct their mistakes based on the provided feedback. In other words,
when teachers create exercises, they can implement corresponding checks. Once students have
worked on those exercises, they receive feedback that is generated automatically by those
checks so that they can correct their code by themselves until no more errors are detected.
To summarize, Pythia helps teachers as well as students by facilitating interactions between
them. It is an interactive platform that assists beginning coders.

1.2 Problem

For now, Pythia incorporates mainly functional and performance checks meaning that it is
able to check if the submitted code works as expected by the teacher and if its performance
indicators such as the execution time are good enough. To improve the platform, we could
also add some coding checks to detect bad coding styles. Providing such verification could
help students to improve their style or to adopt some coding standards promoted by teachers.
Making such automatic checks would lower the teachers’ workload. Furthermore, it could also
help beginners to realize the importance of coding style to improve readability and to respect
coding conventions. In other words, the problem is the lack of coding style checks.

1.3 Motivation

Pythia is a growing project that will become more and more important for programming
courses taught at UCL. It is evolving and is the intermediate agent in projects and homework
processes. It would be very interesting to help improve Pythia. Learning how to code is not

an easy task for everyone at first sight and we all make mistakes that should be corrected as
soon as possible when they occur. Functional checks are already implemented however there
is a lack of checks for bad coding habits. Coding properly is really important to improve the
readability and to match coding standards. Furthermore, coding style checks could detect
common beginners errors that students can directly correct themselves. As explained in [1],
schools and teachers tend to use a project-based learning approach. It means that students
learn to write code by implementing projects. The correctness of students’ solutions are only
checked through the functionality of their implementation while the style is completely left
behind. While it is not that bad for small exercises, problems could emerge on larger projects
especially if students have to work in groups. A group member could noticed that he has a
bad coding style if another member tells him he does not understand his code. However, since
good coding style is not taught, the student could be unable to correct himself. The paper
“Tool Support for Learning Programming Style” [2] also points out the importance of coding
style for the maintainability of program. If a code is hard to read, it would require more time
to be understood and so to perform a software maintenance.

1.4 Objectives

As suggested by the title of this work, the goal is to extend Pythia with structural coding
checks that are not used yet by the platform. In other words, the purpose of this thesis
is to assist students by providing them good coding checks through the Pythia platform.
Since those checks will be used with an educational purpose in mind, it is crucial that they
provide comprehensive help messages to show what went wrong. With the provided feedback,
we expect students to understand basic mistakes in their code so that they can improve
themselves. From a teacher’s point of view, such checks provide some kind of processing that
make the correction of students’ code easier; since coding errors are detected, students can
correct them before submitting their code to the teacher.

1.5 Approach

In order to achieve our goal, we decided to look for tools that already handle coding style
checks and that we could use to integrate in Pythia. We found three Java tools that fits what
we were looking for: Findbugs, Checkstyle and PMD which provide some checking. We chose
Checkstyle and extended it so that we obtained a set of checks that we could use.

To validate our choice, we created three exercises. A first exercise was submitted to students
to make use of that set and simulate the situation where our work would be added to Pythia.
We also tried ourselves to do an exercise and used those checks. As a third exercise, we created
a larger exercise and asked more experienced developers to resolve it.

Our approach is not the same as in [1]. The authors asked 50 students to do an exercise
then they used multiple tools to provide feedback. Students discussed their results to see what
went wrong. They were able to do several iterations with the same set of students. In our
case, we did not have as much students and we could not ask them to do several iterations. So
we made three distinct exercises and we also decide to focus on one tool. The work described

in [2] is also a motivation for us because the authors also used Checkstyle on two students’
project and they noticed improvements in the number of errors detected. In fact, they made
an experiment during two years. On the first year, they asked students to do a project. They
then used Checkstyle on the students’ solutions and gave them the generated feedback. Since
there were a lot of mistakes, they decided to teach students some style conventions. The next
year, students made a second project and Checkstyle was used as well. Again, the results
showed improvements as the number of errors decreased.

1.6 Contributions

This thesis provides an overview of some selected Java tools: Findbugs, Checkstyle and PMD.
In order to do so, we tried to understand how each of them works and compared their ap-
proaches. We have extracted implemented checks that are interesting for us and we have
extended a tool in order to provide a set of checks that could be implemented on Pythia to
assist Java beginners. As a validation, we have also evaluated how this helps students by
providing an exercise with a set of coding checks. The main contribution of this work was to
see how we could extend Pythia with some checks that might be interesting to use on such
platform and how a tool like the three mentioned could be used.

1.7 Roadmap

We began this thesis by introducing the selected analysis tools and we explained how each
of they works by providing detailed examples of implemented checks. We also talked about
Pythia and what the platform can handle at the moment. Those introductions defined the
background (Chapter 2) of our work. Then in the Chapter 3, Related work , we have had a
look at other platform that are similar to Pythia so that we compared them, see what were the
differences between them and we also identified what features do they share. After that, in the
Chapter 4, we explained the problem we tried to answer. We also described what exactly are
coding style checks compared to functional checks in the section 4.1. Using what we learned on
analysis tools, we talked about their different approaches to handle the detections of coding
flaws. Based on that, we implemented a solution to the problem that is described in the
Chapter 5 (Implementation) and explained the integration on Pythia. The validation part in
the Chapter 6 explained how we tried to evaluate the interest of integrating such checks. To
do so, we have created a small exercise that was then submitted to students to see how they
interact and we collected their feedback about our work. We also tried Checkstyle ourselves
in an additional experiment. As a conclusion, we summarized all those steps in the Chapter
7 and we shared our final thoughts regarding our results.

Chapter 2

Background

Before talking about what has been done in this thesis, it is important to define the background
of this work. What tools were used? How do they work? This chapter will answer those
questions by introducing some analysis tools as well as Pythia, a platform used by teachers
and students here at the UCL.

2.1 Analysis tools

The first part of this chapter will focus on three analysis tools that have been chosen for
comparison: Findbugs, Checkstyle and PMD. Those are probably some of the most popular
analysis tools used by Java programmers. To really understand how they work, an imple-
mented example will be discussed for each of them.

2.1.1 Findbugs

Overview

As suggested by its name, Findbugs [3] [4] is a tool that checks Java code and uses predefined
detectors to find patterns that can lead to bugs. It works on bytecode and because of that,
understanding implemented bug patterns as well as extending Findbugs can be difficult for
inexperienced programmers. This first tool focusses on potential bugs which means that it
mostly looks for functional errors instead of bad coding style.

Errors detected by Findbugs are grouped in nine categories, including Bad Practices or
Dodgy code (for the other categories, please consult the Findbugs website [3]).

Each of those bugs are also evaluated on a 1-20 scale: scariest (rank 1 to 4), scary (rank
5-9), troubling (rank 10-14) and of concern (rank 15-20). A last important thing to note is
that Findbugs performs a static analysis so that it works without executing the input code.

Example

The following example comes from an article [5] explaining how to write a custom detector
for Findbugs. The author implements an “unguarded logging” detector. In other words, he
wants to verify that programmers check whether the condition “Logger.isLogging()” is true
before using the instruction “Logged.log(...)". As most programmers are lazy and because it
is not convenient to look through the code of projects, he wrote a detector so that Findbugs
does this verification automatically.

When writing a Findbugs detector, two methods have to be implemented, even though
auxiliary methods can be added if needed. The wisit(Code) method is called when the body of
a method is analyzed and sawOpcode(int) is called for each opcode that belongs to that body.
An opcode or operation code tells to the Java Virtual Machine which operation to perform.
In other words, the JVM uses instructions that consists of an opcode followed by operands
depending of the action defined by that opcode. For example, to store the int at the top of the
stack into the first register, the JVM will use the instruction “istore_1”. In fact, the machine
will use the opcode “0x15” to refer to the “istore” action because it is more convenient to use
hexadecimal numbers for all operations instead of words.

For this Findbugs’ example, the detector needs to keep track of three values: the program
counter where the logging instruction has been found as well as the boundaries of the ’if’
that checks the corresponding condition. As shown in the code fragment 2.1, the wisit(code)
method just initializes those parameters and then call the superclass’ implementation which
knows how to “visit” the parse tree of a Java program.

Code 2.1: The visit(code) method

public void visit(Code code) {
seenGuardClauseAt = Integer.MIN_VALUE;
logBlockStart = 0;
logBlockEnd = O0;
super.visit (code);

The sawOpcode(int) contains three parts that correspond to the three if-statements in the
code fragment 2.2. That is because in this case, the detector needs to check three opcodes.

The first part saves the value of the program counter PC when “Logger.isLogging()” is
found. In order to do so, the method looks for the opcode INVOKESTATIC which corresponds
to a method call. Class and method names are used to identify the method called.

The second part checks that this call is part of an if-condition and if so, it saves the
boundaries of the “if”. The opcode to seek is IFEQ and if that opcode is close enough to
the previous INVOKESTATIC that means that the “Logger.isLogging()” belongs to that if-
condition. The writer explains that he found values +3 and 47 empirically.

The last part verifies that the next “Logged.log(...)" found belongs to the range com-
puted. This time again, the method waits for an INVOKEVIRTUAL that corresponds to a
“Logged.log(...)" call. This time the method call is found using INVOKEVIRTUAL instead
of INVOKESTATIC. The difference is that INVOKESTATIC is used to call class methods
that are declared as static while INVOKEVIRTUAL invokes an instance method. Then, if

the program counter is out of the if-boundaries that has been previously computed, a bug has
been detected. A Buglnstance is created with parameters that define the bug.

Code 2.2: The sawOpcode(int) method

public void sawOpcode (int seen) {
if ("cbg/app/Logger".equals(classConstant) &&

seen == INVOKESTATIC &&
"isLogging".equals(nameConstant) && "()Z".equals(sigConstant)) {
seenGuardClauseAt = PC;
return;
}
if (seen == IFEQ &&

(PC >= seenGuardClauseAt + 3 && PC < seenGuardClauseAt + 7)) {
logBlockStart = branchFallThrough;
logBlockEnd = branchTarget;

}
if (seen == INVOKEVIRTUAL && "log".equals(nameConstant)) {
if (PC < logBlockStart || PC >= logBlockEnd) {
bugReporter.reportBug/(
new BugInstance ("CBG_UNPROTECTED_LOGGING", HIGH_PRIORITY)
.addClassAndMethod (this) .addSourcelLine (this));
}
}

Note that, after implementation, new detectors need to be added to the Findbugs package
before using them.

Remarks

Findbugs can easily be used through its graphical interface (see Figure 2.1). However, as
mentioned above, Findbugs is not easy to extend. Writing a custom detector can be really
difficult because manipulating Java bytecode is not intuitive at all. Findbugs’ detectors need
to analyze programs opcode by opcode and for that reason, corresponding patterns to look for
become quickly long to write. The expressiveness of Findbugs is limited by the expressiveness
of the bytecode. Findbugs cannot exploit information that got lost when moving from source
code to Java bytecode. For example, detectors cannot work on variable names. Variables are
handled using opcodes such as istore and iload so that corresponding values are just stored
and loaded whenever they are needed. The bytecode that corresponds to an instruction like
“int 1 = 1;” will just store the value 1 in a register.

File Edit Nawvigation Designation Help

Package | Priority | Category | Bug Kind | Bug Pattern | € kel ndEsmibUG Sl
" a7 assert true; -
o= [edu.umd.csfindbugs.config (3 =] a5 1 -
o= [edu.umd.csfindbugs filter (1) 99 b
9 [edu.umd.cs.findbugs.util (1) 100 static final Pattern tag = Pattern.compile|(”%Yys%<(%\\u+) ™
¢ [Medium (13 10l public static String getXMLType (Inputitrean in) throws IO
¢ [Bad practice (13 1oz if |(!in.markSupported(]]
é lj Strear not closed on all paths (1) igi throw new IllegalhdrcumentException|”"Input stream
¢ 3 Method may fail to close Strgam 1 i 105 in. mark {5000] 3
D edu.umd.cs.findbugs. util. UtiLget<mL] 108 BufferedReader r = null;
o= [edu.umd.csfindbugs visitclass (13 T 107 try {
o [edu.umd.cs findbugs workflow (2) 108 r = new BufferedReader(UTtil.getReader{in}, 2000):
o= [java.util () 109
| 110 String s:
111 int count = 0;
11z while (count < 4] { =5
113 s = r.readlinei);
114 if (5 == null)
115 break;
116 Matcher m = tag.matcher(a): =
[[+
| | Find | | Find Hext | | Find Previous

el Tttt

edu.umd.cs findhugs util Uil get<MLTypednputStream) may fail to close stream

At LRIl java:line 108]

In method edu.umd.cs.findbugs.util. Util. get<MLTypednputStream) [Lines 102 - 123]
Meed to close java.io Reader

W

Method may fail to close stream

The method creates an 10 stream ohject, does not assign itto any fields, pass itto other methods that might close it, orreturn it, and does not appearto
close the stream on all paths out of the method. This may resultin a file descriptor leak. ltis generally a good idea to use a finally hlockto ensure that
streams are closed.

« UNIVERSITY OF
http:ifindbugs.sourceforge.net/ ﬁ) M_ARYLAND

Figure 2.1: Screenshot of Findbugs’ interface with reported bugs [3]

10

2.1.2 Checkstyle
Overview

A second analysis tool is Checkstyle. This one looks for violations of coding conventions. It is
a really good tool to ensure coding standards and thus to improve consistency and readability
in projects. Unlike Findbugs, Checkstyle works with abstract syntactic trees (AST) that are
more easy to use. Another difference is that Checkstyle is more focused on coding style than
on functional errors making it even more interesting for the purpose of this thesis. That being
said, Checkstyle is less powerful than Findbugs since it cannot detect some of the bugs that
Findbugs would report. In fact, as the code is represented as an AST, it is up to the user to
interpret from that representation what the code really does unlike bytecode which is directly
what the machine performs. In theory, Checkstyle could detect bugs as well as Findbugs but
it is less convenient for functional checks. On the other hand, Checkstyle is better for coding
checks because it can for example work on variable names that are lost in bytecode. All the
checks provided by this tool are divided into several groups based on what they are looking
for such as Class design, Coding or Naming conventions (see the Checkstyle website [6] for
further details).

There are up to 15 categories because Checkstyle comes with a lot of different checks. As
people do not really need all of them, users can specify in a configuration file which checks are
needed.

Example

The following example (see code fragment 2.3) has been implemented by us for this thesis.
The goal of this check is to find two nested if-statements so that the first ’if” only contains the
second one and no other instruction. In that case, the two conditions could be combined to
avoid the nested ’if’. As said in the previous section, Checkstyle use the AST. The nodes of an
AST are called Tokens. When writing a check, at least two methods have to be implemented.

The first one, named getDefaultTokens(), specifies the starting node of the check, in this
case, it is a “LITERAL_IF”, starting from that node, the method goes through the AST
until it finds the body of that 'if’. To make sure that that block only contains the nested
"if’, there are two requirements. The first child has to be an “if” and the first and the last
children have to be the same. In fact, the last child of the body is the “}” character so the
last but one is taken instead. If both requirements are met then the check should notify
the programmer that he could combine those nested “if”. In the console, such notification
looks like “/tmp/work/Hello.java:30: warning: You can combine those conditions.”. The
Java file that was analyzed is specified as well as the line of the detected error and after the
warning keyword there is the message that corresponds to the checks and that is specified in
a configuration file. Writing the message into the configuration file allows users to customize
it according to his needs. For example, if a teacher want to use a check for french students,
he can write a message in french without having to update the code.

11

Code 2.3: Nested if check

public class NestedIfCheck extends Check {
@0verride
public int[] getDefaultTokens () {
return new int []{TokenTypes.LITERAL_IF};
}

@0verride
public void visitToken(DetailAST ast) {
DetailAST objBlock = ast.findFirstToken(TokenTypes.SLIST);

if (objBlock !=null) {
DetailAST firstChild = objBlock.getFirstChild () ;
DetailAST lastChild = objBlock.getLastChild().getPreviousSibling()

>

if (firstChild.getType () ==TokenTypes.LITERAL_IF &&
firstChild.equals(lastChild)){
log(ast.getlLineNo (), "nested.if.check");

Remarks

Checkstyle is easy to use and to extend. Because this tool relies on AST, custom checks work
as a tree traversal. Each node is called a token and it is easy to get corresponding attributes
thanks to implemented methods and a commented API. That being said, operating on a tree
can quickly become complicated while dealing with the hierarchical organization of tree nodes.
All Java keywords are represented by tokens so that the expressiveness of Checkstyle is quite
good. However, its purpose is coding style therefore it suits more that kind of checks.

Analysis of Checkstyle

Now that we explained why we chose to work with Checkstyle, we describe it more in detail
in this section. Checkstyle is a source code based recommendation system which means that
it goes through the source code and provides feedback to improve the quality of that code.
The definition of the “quality of the code” depends on the system because all systems are not
designed for the same purpose. In the case of Checktyle, it aims at improving the style of the
code. To analyse the tool, we use the criteria that are described in [7] (see Figure 2.2); that
paper explains the development decisions to make when building a recommendation system.
After that, we look at all the detectors provided by Checkstyle and classify them for later use.

12

Requirements Design Implementation | Validation
Approach 1. Intent 3. Corpus 5. Method 7. Support
User interaction 2. HCl 4. General I/O 6. Detailed 1/0 8. Interaction

Figure 2.2: Development decisions as presented in [7]

A Source Code Based Recommendation System

The authors of [7] compares different source code based recommendation systems by using
8 groups of development decisions that are classified along two axis. They identify devel-
opment decisions that should be made when building source code based recommendations
systems in order to address issues that may emerge. The first axis refers to the four phases
of the development cycle: Requirements, Design, Implementation and Validation. The other
axis specifies if the decisions are related to the approach used by the system or related to
the user interactions. Following those axes, we first have to handle the approach and user
interaction decisions for the requirements phase then those for the design phase and so on.
Those decisions should be made while building a source code based recommendation system
but here we used them to analyse Checkstyle.

Intent (Approach-Requirements)

This group contains four decisions that define the purpose of the system.

Intended User The target audience of Checkstyle are Java developers from novices to more
experienced ones. The tool only handles the Java programming language but as it
provides a lot of detectors, it is useful whatever the level of the user is. Examples of
users are those that just want to check their own code, teachers that want to checks
students’ code or managers that want to keep some programming conventions between
a group of developers. There is no assumption about the level of the user but the tool
still needs to be configure accordingly.

Supported Task Checkstyle provides feedback, it analyses the code and gives recommenda-
tions about the style. As it does not raised errors but warnings, we can consider that it
provides code suggestions.

Cognitive Support The tool answers two questions to improve the coding style. By pro-
viding feedback that contains specific detector messages, it answers the what: What is
not good according to the Checkstyle point of view and what the user should change in
his code. For some detectors, it also answers the how: How can the user correct himself.
In fact, some messages as implemented in Checkstyle are just observation (for example
“6” is a magic number) while others hint a solution (for example Missing default case in
switch statement). It is also interesting to note that the description of some detectors on
the website answers to the why: Why did the Checkstyle developers have implemented
a specific detector (for example Rationale: Some developers find inline conditionals hard
to read, so their company’s coding standards forbids them. [6]).

13

Proposed Information As we just said, the tool describes what to change in the code
and for some detectors how to change it. The feedback also specifies the line where the
problem is found so that is is easier for the user to know where he should correct himself.

Human Computer Interaction (User interaction-Requirements)

This group of decisions describes the interactions between the user and the system.

Type of System Checkstyle can be used as a command line tool but also as an Eclipse’s
plug-in. Using that IDE makes it easier to configure and to use since there is a graphical
interface.

Type of Recommender Checkstyle is an advisor since it suggests what to change. The two
other types are “finder” and “validator”.

User Involvement To use Checkstyle the user has to configure it so he has to chose the
detectors and write a configuration file unless he uses the default one. Write the config-
uration file is not only writing the set of detectors but also tuning detectors’ variable if
there is any (for instance the limit of the length of code lines). The user also needs to
parse the output because the tool provides the line where an error has been found but
the user still has to look for the corresponding line in his code. However, if Checkstyle
is used through Eclipse, lines with errors are directly marked.

Corpus (Approach-Design)

The corpus is the data that are required for the source code based recommendation system to
provide its recommendations.

Program Code The recommendations are computed from a source code a developer is work-
ing on.

Complementary Information The tool only analyses the source code and no other input.
In other words, Checkstyle provides information about the source code and nothing else
so there is no complementary information.

Correlated Information Since Checkstyle only works on the source code, it does not have
to handle correlated information between several data input. If a source code based
recommendation system analyses more than just the source code, information that comes
from those other inputs needs to be correlated with the information from source code.
It is not the case with Checkstyle.

General Input/Output (User interaction-Design)

Decisions that are related to the user interaction but for the Design phase this time.

Input Mechanism Checkstyle does not require any other input from the user than the source
code and a configuration file.

Nature of Input The input is the source code.

14

Response Triggers Checkstyle provides its feedback only when the user calls the tool. It
does not work proactively and the feedback is only updated when the tool is called again.

Nature of Output The output contains the lines of the detected errors (if there is any) and
the corresponding message of the detectors. It is generated as text in the console. In
Eclipse, the integrated feedback makes it possible to click on the warning messages list
and jump to the corresponding lines.

Type of Output The type of output provided by Checkstyle is suggestions to improve coding
style.

Method (Approach-Implementation)

This section groups the decisions about the software recommendation process.

Data Selection Checkstyle makes use of almost everything in the parse tree of the source
code: variables, values, scopes, types, expressions, instructions, code blocks, methods
and classes. Depending of the set of detectors that are chosen, the level of details can
be very specific.

Type of Analysis Checkstyle uses a syntactic approach as it transforms the source code into
an abstract syntax tree and analyses it.

Data requirements The only requirement is that it should be Java code as it is the only
supported programming language. That code should also be parseable since Checkstyle
works on the corresponding parse tree.

Intermediate Data Representation The tool uses a tree-based approach since it works
with AST.

Analysis Technique The technique is based on pattern matching. A detector is imple-
mented so that it looks for specific tokens in the AST and acts accordingly. The tech-
nique used is then to visit the abstract tree and look for the corresponding pattern.

Filtering No filtering is performed by Checkstyle, there is no pre-processing before the anal-
ysis of a source code.

Detailed Input/Output (User interaction-Implementation)

Decisions about the detailed input/output required by the source code based recommendation
system.

Type of Input Checkstyle does not need additional information except the configuration file
that specifies which detectors to use and so what to look for in the code.

Multiplicity of Output The tool provides a single output that contains the lines with errors
if there is any.

15

Support (Approach-Validation)

We do not know how the Checkstyle’s developers validated it so we did not discuss those
decisions. We can imagine that it is validated through feedback users can send to its develop-
ment team but we have no information.

Interaction (User interaction-Validation)

It defines the interactions of different types of users.

Usability In general, the tool is very easy to use especially through the Eclipse graphical
interface.

System Availability The source code of the implementation of Checkstyle is available on
its website [6].

Availability of Recommendation Data Results of validation are not available.

Conclusion of the analysis

Even though the purpose of the development decisions was to make sure that source code
based recommendation systems’ developers do not forget something while building the sys-
tem, it is still interesting to use them for our analysis. They cover all the important aspects
of a recommendation tool. Analysing Checkstyle in that way allows us to have a better
understanding of the tool and provide a good overview of it.

Classification of detectors

Checkstyle’s detectors are already grouped into categories based on what they are looking for.
Examples of those categories are metrics, naming, imports, etc. Since there are more than
100 detectors, it is not always easy to find the detector we need. For that reason, we decided
to make other classifications that we found interesting and that we used in chapter 6.

Novices and experienced users

The first classification we described in this section is to identify detectors that could be use-
ful to help novices programmers such as learning students, and those for more experienced
developers. Since our work is more focused on beginners, we briefly describe all the detectors
for novices while we just explain some of the others. Novices’ detector are the ones that can
help beginners, there are not detectors that novices can use by themselves as some of those
detectors can be tricky to configure. In other words, the novices’ list is interesting for a teacher
that wants to check students code while if we give that list to beginners, they might not be
able to understand how to use it. The purpose is just to identify a set that focuses on errors
that are not too complicated since we do not expect students to write overcomplicated code.
Detectors are listed in alphabetical order.

16

Detectors for novices:

AvoidStarImport It is better to avoid star in import so we can see if students know what
they really need to import. An example of star import is “import java.util. *”.

AvoidInlineConditionals Inline conditionals could be tricky for novices and we might want
to avoid them.

BooleanExpressionComplexity This detector can be tune to set a limit on the number of
Boolean operators in Boolean expression. For example, the complexity of “(booleanl==boolean2)
&& (boolean2==boolean3)” is 1.

DeclarationOrder It is used to defined an order on declarations.

DescendantToken This detector is a bit tricky to use but it allows to set limits of a certain
type of token as child of another type of token. For example we can use it to make sure
that in each method, there are from 2 to 5 local variables. To do so, we need to configure
the detector so that it counts the children of method definition tokens that are variable
definition tokens and set minimum and maximum limits to 2 and 5. It requires some
knowledge about Checkstyle’s AST but can be useful in some situations.

DefaultComesLast It can be useful if we want to promote the convention of writing the
default case of switch statements at the end.

EmptyStatement It checks empty statements.

ExecutableStatementCount It counts the number of definitions (of methods and construc-
tors) and initializations. A limit can be defined.

FallThrough A detector that check switch statements; each case should contains a break,
return, throw or continue.

FileLength It is used to set a limit on the number of lines the file can contain.
IllegalType It can be useful to prevent the use of specific type.

Indentation It checks that the indentation is correct, it is possible to configure the number
of spaces expected between indentation levels.

InnerAssignment Assignments in subexpressions are not very convenient to read.
LineLength A detector that checks the length of each instruction lines, a limit can be defined.

MagicNumber It checks magic numbers in the code. It can be configured so that some
values are allowed.

MethodCount A user can configure this detector to define maximum number of methods.
MethodLength It is used to define the maximum length of methods.

MissingCtor A detector that make sure we write a constructor.

MissingSwitchDefault It is a good habit to always write a default case in switch statements.

ModifiedControlVariable It general, we prefer not to allow novices to modify control vari-
ables in loop.

17

ModifiersOrder Define an order for modifiers could improve the readability.

MultipleStringLiterals We might want to avoid writing the same String literal several
times.

MultipleVariableDefinition It checks that there is no more than one variable definitions
per line.

NestedForDepth and NestedIfDepth It can be configured to set a limit on nested for/if
depth.

ParameterNumber It is used to make sure that methods and constructors definitions do
not have too many parameters.

ParametersAssignment We might want to prevent novices to change values of parameters.

NeedBraces It can be used to make sure that novices write braces for do, if, else and while
block. Syntactic sugar allows us to omit braces if the body is a single instruction but
we find that it might be better to force students to write them in all cases (until we are
sure they understand how those blocks work).

For example: write “if(!bool) { i++; }” instead of “if(!bool) i4++;”

OneStatementPerLine To improve the readablity, it is better to not write more than one
statement per line.

RedundantImport Novices sometimes import the same package without notice it.

RegexpSingleline, RegexpSinglelineJava and RegexpMultiline Those detectors can be
used to look for specific expression in code. By tuning the limits, it is possible to force
some expressions to be used as well as prevent others to be written.

ReturnCount It is used to put a limit on the number of return statement in methods.
SimplifyBooleanExpression Novices sometimes complicate Boolean expressions.
SimplifyBooleanReturn A detector for complicated Boolean return statements.

[43 ”

StringLiteralEquality Novices often use “==" instead of the equals methods when they
compare Strings.

TrailingComment We might want to avoid trailing comment as some developers think that
it is a bad practice. A trailing comment is a comment that is written on the same line
of an instruction. For example: “int iter = 0; //This is an iterator”.

UnusedImport While implementing a class, novices can try several implementation before
they find the solution and forget to remove imports that are no more used in the final
version.

UnnecessaryParentheses It can happen that we write more parentheses that needed.

Detectors of Naming Conventions All the detectors that check the naming can be useful
if we want to promote a format.

18

Detectors for experiences users:

b

CovariantEquals It checks that if an “equals()” method is written, it overrides the “equals”

from “java.lang.Object”.

CyclomaticComplexity A detector that can be used if we want to set a maximum limit to
the cyclomatic complexity of methods. Cyclomatic complexity refers to the number of
different paths that can be followed from the start of a code to its end. For example,
a method that just contains a return instruction has a complexity of 1 while a method
with an if-statement has at least a complexity of 2 (depending on whether or not the
condition is true, the execution will follow the path with the body of the “if” or not).

Illegallmport If we do not want some imports to be used, we can set them as illegal with
this detector.

IllegalToken A detector that prevents from using specified token. If for example we do not
want switch statement in the code, we can use this detector.

JUnitTestCase It checks that “setUp”, “tearDown” and “suite” methods are used correctly
(with correct signature).

TodoComment This detector looks for “T’ODO” in the code. We can use it to make sure
we do not forget one.

We do not describe the 75 detectors left.

Instructions, Methods and Classes

This classification is based on which level the detectors are working on. We identify three
level: instructions, methods and classes and higher. As we have already described a good part
of the detectors, we do not explain them more because it would be long and we would repeat
ourselves. So, we simply show the distribution among those three levels. The purpose of such
classification is that depending of the size of an exercise, we would not need to consider all
the detectors.

Level Instruction | Method | Class and higher
Number of detectors 53 14 54

What is interesting to see here, is that Checkstyle is more focused on instructions, classes
and higher levels. With the detectors from the instructions level, we have a lot of checks that
are very precise but also very specific. For small exercises that just contain a method to fill,
almost a half of all the provided detectors can be ignored. The other half is more relevant
for projects. On a platform such as Pythia, most of the exercise are methods to be filled by
students.

Code critics groups
As a third classification, we have followed the one that is used in [8]. In this paper, the

authors discuss code critics which are detectors that belong to the Pharo Smalltalk IDE.
Those code critics are classified in seven groups: Unclassified, Style, Idiom, Optimization,

19

Design flaw, Potential bug and Bug. As already said in the previous section, we do not go
into details here as we just give the distribution.

Groups Unclassified | Style | Idiom | Optimization | Design flaw | Potential bug

Bug

Number of detectors 28 50 10 13 13 7

As expected the main part of the detectors focus on the style. All other groups are more
or less covered. There is no detector for bug, only for potential ones. As we already know,
Checkstyle does not look for bugs since its purpose is to improve the coding style.

Remarks

Those three classifications are very subjective because other people would probably find dif-
ferent distribution. For each classification, some detectors could be put in a different group.
There are also detectors that could belong to several groups but we decided to put them in
only one. In the end, we think that those distribution are interesting to see as it helps to
understand what Checkstyle focus on.

20

2.1.3 PMD

Overview

Our last analysis tool is PMD and offers a solution between what Findbugs and Checkstyle
provide. It will check source code and finds bad practices that can lead to bugs. It is less
powerful than Findbugs because finding functional errors is not its main purpose. PMD also
works with ASTs and it comes with a lot of rules but it is easily customizable as well. According
to its website [9], PMD looks for Possible bugs, Dead code, Suboptimal code, Overcomplicated
expressions and Duplicate code. PMD includes rules for several languages but as the scope of
this thesis is limited to Java, only the Java rule set has been looked at.

Example

Code fragment 2.4 comes from the PMD website [9]. This is the implementation of a rule that
verifies that methods should not have more than one “return” instruction. PMD uses ASTs
that are similar to those used by Checkstyle. Again, when writing rules, the visit() method
has to be implemented.

First, this rule starts from nodes that are class or interface declarations. If it is an interface,
there is nothing special to do. If it is a class, we call the second visit method. Abstract method
are ignored as well. For other methods, the rule’s implementation simply counts the number
of child nodes that correpond to “return” instructions. If there is more than one child, then
the rule iterates over them and raises the violation on the last “return”.

21

Code 2.4: The only one reutrn rule

public class OnlyOneReturnRule extends AbstractJavaRule {

@0verride
public Object visit (ASTClassOrInterfaceDeclaration node,
Object data) {
if (node.isInterface()) {
return data;

}

return super.visit(node, data);
}
@Override

public Object visit (ASTMethodDeclaration node, Object data) {
if (node.isAbstract()) {
return data;

}

List<ASTReturnStatement > returnNodes =
new ArrayList<ASTReturnStatement >();
node.findDescendants0fType (ASTReturnStatement.class,
returnNodes, false);
if (returmnNodes.size() > 1) {
for (Iterator<ASTReturnStatement> i =
returnNodes.iterator () ;
i.hasNext ();) {
Node problem = i.next();
// skip the last one, it’s 0K
if ('i.hasNext()) {
continue;

}
addViolation(data, problem);
}
}
return data;
}
}
Remarks

As shown in the example, PMD uses ASTs that contain abstract nodes. Those are extented
for each kind of instructions that can be found in Java source code. Abstract nodes are a
bit difficult to use because it contains some fields and methods that are not intuitive. PMD
remains an expressive tool that is able to find some bugs as well as checking code style.

2.1.4 Other tools that worth to be mentioned

In this section, we talk about two tools that we did not use nor analyse in detail but that are
still interesting to notice. We just provide an small overview.

22

An Eclipse Plugin [10]

The Eclipse plugin that is described in [10] is an interesting tool. The authors have imple-
mented a plugin for the Eclipse IDE in order to help Java developers to improve their style.
To achieve that goal, they focus on 4 points.

Promote the use of CamelCase and English word CamelCase is a very common nam-
ing convention and the English language is probably the most used by developers. For
those reasons, the authors believe that it is a good practice to follow those guidelines for
naming. The idea is that they define a style for the users so that if everyone uses that
style, the readability of the code is improved since everyone codes the same way. To
check the names in the code, they split the word using the uppercase letters and then
they look for occurrence in the English dictionary.

Help to set the correct variable scope The scope of variables should be the lowest. There
is no reason to create a variable outside of a method if it is only used in that method.
For each variable, the plugin compares the declaration level with the levels where the
variable is used.

Promote commented code The plugin looks for declaration of classes, methods and vari-
ables but also loops and conditional branches in the code. For each of these lines, the
tool asks the user to write a comment.

Correct of code according to the style For instructions block with bad indentation or
with misuses of braces, the tool rewrite the block correctly.

Like the other tools that we have described, this plugin helps users to improve their coding
style. The three first points are also handled in Checkstyle. The main difference is the last
point. The other tools we have considered so far only provide recommendations without
modifying the code while this plugin corrects the code. Depending on the case, being able to
change the code directly can be very interesting.

A static analysis framework [11]

After explaining how important a good coding style is, the authors of [11] describe how they
have implemented a framework to help Java beginners. They have first identify nine poor
programming practices such as too many loops, not enough methods, unused variables, etc.
They also find four common errors such as confusion between instance and local variables.
After that, they have created a framework so that users can correct those mistakes. So they
developed a static analysis framework that works like Checkstyle in the sense that it works
with abstract syntax tree and the user can chose the framework’s checks that he wants to use.

An interesting feature is that it is possible to perform a structural similarity analysis. To
do so, the user has to provide a model of the solution so that when a student code is analysed,
a comparison can be made (see figure 2.3). The framework comes with a graphical interface
so that it is very easy to use.

23

Save

Compile & Save

Reset

Mnalyse

Structural Similarity Analysis Result

Your solution does not have the right structure!

Here is the structural comparison between your solution and
model solution:

Your solution

Model Selution

loop
1 assignment
1 assignment 2 methodCall
loop
1 assignment 1 assignment
1 methodCall loop
1 assignment
1 methodCall

View suggested solution

Figure 2.3: Structural similarity analysis [11]

2.2 Pythia

All the research made in this thesis would serve Pythia [12], a platform developed here at UCL,
by adding new features. Thanks to Pythia, teachers can write programming exercises and put
them online so that students can make them at home using a web interface. Submitted code
can be checked automatically so that students directly know if their code works as intended
or not. It is important to note that Pythia does not depend on any programming language
so that it is a really complete and practical tool. Using this platform facilitates the entire
process of exercises/homework/projects given to students by teachers.

2.2.1 A platform for students and teachers

As mentioned before, Pythia is an online platform that serves teachers and students at UCL.
It is built so that it can handle several programming languages which allow teachers to use
that platform whatever the language they want to teach is. Pythia provides both theory and
exercises.

Teachers provide theory by giving their courses to one of the Pythia developers that then
upload them on the server (see section 5.2.5 for more details). Once it is done, students just
need to subscribe to those courses to access them. In fact, they need to create a account
on the platform and once they subscribe to a specific course, they can either read it on
the corresponding webpage or download it in a PDF format. The practical part consists of
modules that contain a set of exercises that are related to courses (see Figure 2.4). Exercises
are displayed such that students can directly see the name of the exercise, the difficulty rated
on a five-stars indicator and a status. Several states have been implemented so that students
can clearly know their progress. If nothing is displayed as status, that means that the student
never clicked on the exercise. As soon as the student opens the webpage of an exercise, the
state is set to “started”. While looking at the status, it is really easy to see what has been
done as well as if there are still some things to do.

25

«

$5°80:51 B ¥LOZ IEW 8 3YauBWIp 3] 1SSNFY

GG LEGL B FLOZ 1BW 8L AYIUEWIP 3| ISSNEY
£0°6Z°LC B FLOZ 1BW /| IPIWES 3| IsSNay

LEQLILZ B PLOZ 1BW /| Ip3wes 3] 1Ssnay

mels

uoixauuosRa

uoryewrtre13oid e[g worloNpoIu] [TOTTANIST),

JA
SRR

MR
MR

sHUnduIa

9SIN0O 9Y) O} paje[od SaSIdIXS JO ISI[9T, :H°C w.:.-wm.m—

NEWBWY|dWOD 301218XT : |} UISSIN
uones|[eal 3p SeuUd | € UOISSI
uonesies) ap aseud - 6 UoISSIN
uonesiesl ap aSeyd - / UBISSIN
uonesIesl ap aSeUd - g UBISSI

BNEWBWY|dWwod 821218%T : UCISSIY

saleBWY|dwod s8dIexT - g uoissiy &Y
¢ aueuswg|dwod 3212183 | € UoISSI
6 UDISSIP * [BUL UBIg 9P UoNSBND
/ UDISSIW : Ul UBIg 8P UonsanD
® g uoissIy : el Uglig 5P UoNSaND
(E)G UDISSIY - [EUI4 UE|Ig BP UDBSND)
 UDISSIPY - [BUI- UBJIg 9P UDNSANT)

€ UoISSI - [eul] uejig sp uonsent &Y

2 uoIssIpy - [euid ugjig ap uonsenp &Y

]

| UOISSIY| - [eul{ Ug|ig 3P uonsany)

awsjqold

uonewweibouid e| e uononponu| [LOLLANIST]

S3NPOjj SIN0D S3WR|qOid PIOY AP NE3|GEL UV UAAAS ()

26

(uonjeurmreioxd e g wononpoayuy [TOTTANIS), 9SIN0D 8} WoIj 8s1Iexs Jo sjdwexs Uy :G'g 9In3Iq

0S Sepwiwou 3uT adk) 8p S|geLEA BUN SUBP SAN0I) 35 18 BIUINGJ Bl9p 1o snoa wedap

ap Inajen B UTIUTIA " In0 - we3sAS D9AE ‘PIEPUES SILOS B| INS BUNS €] SP JUSWIS anbEuD JBUDIE ZaA3p SNOA,

JuIaPE IS0 | [2unjeu 9]
anbsio| npualus uaiq ajg.e,s awwelboid 87 0s |nu-uou [21njeu [anb apodwiu Jnod asnoelAg ap B)INs €| JaNdjed ap

Jousad b enep b1d un zandg “ajdw 1)UOD UN J2ANOI] JUSLUB[BNIUBAY & SUSIDIBLUDUIEL S3| J9pIe,p ULy

?(gs) urqurzd- qno -weysks
{

| sed aublape,u JUENo23p Ua asnoelAg

O e g ap 91Ins g anb (9108 Un J8AN0J} 8P SiWIad Sed SUIOWUESU JUOU JUSLLS|IBNIDE $OND8YS SIS8) 58] SNOL "8l0gels 118
{ <

!z /05=0% 5 nd &,u snbiewsyrew amaid sunane,nb aIip-g-1se,d ‘2IN2allod un,p Juswslenioe 1I6..S || IS0y 0S [eniul [ainjey 8|
}lo==z#08) 3T €

Hi=igs)sTrum ¢ auodwn nad ‘| sinolno} Jusublane asnoeIAS ap S8lins sa| s8] ajjenbe| uojes anbiewayiew asayledAy, 1se ZjejoD

¢ (08) uTauTId" IN0 WRISAS

1819d31 9 TZ ¥ | ¢ ¥ | 91NS Bl WISNE IS8 | aigwou 3] anb sioj aun,nb zanbiewey

ap aimaeluoo e

“0S S|qelIeA B J8SI[BNIUI U 491BPSP Sed Z9ASP 8U SNOA “UT=W SPOYISW | 3P 3P0 3| UBWSIBNP 11 ZaAIDT . i
TP Tr89L 50k 0Z0FEL 92 5 L ¥E H1 JW@nqo uo || ap uened ua ‘sidwaxe ted

uours ¢ T4'Exg | _ g
1red 390 ¥s 15 ¢ a/'s |

uonssnp
'S 3jnwuoy B| Juenbydde

e
UB 21NS ©] 3D SIUBAINS SJUBWSIS S8 JBIN2JED 2HNSUS Nad UQ 0S SUOJSIOU SNOU aNb NUFUOU [2INJEU [Nk suodwiu

SUOISSILLNGS Sy ISsnal awa|qeld - .13
- 153 3UNS ©] 3P [2INEU JaIUBId 37 "SIUBAINS SISIUBLU B 3P SIULSP ‘S|aINleu Sp S1NS JUN 1S3 8SNBIAS 9P Slns BT

o

enel - afebueq

SiaqLIo) usnSeqss : (s)inainy ax|¢NU0H

| UOISSII\ : |euld ue[lg 3p uolsanyY

S3NPON sino) sawsjqolid piog sp neajgel UY UaA3lS 9

uojxauuossq

27

The Figure 2.5 shows an example of an exercise provided on Pythia. The text on the
left part of the screen explains the exercise and so, what students have to do to resolve the
problem. The right part is where students write their code so that their method or their
program performs the action described in the left part. Depending on the exercise, there can
be more explanation or some specifications to complete the description with more technical
instructions or other implementation details such as methods signatures (for exercises that
ask students to complete the body of a method). As shown in Figure 2.5, several features are
implemented.

First, there is a drop-down list to select the programming languages chosen by the student
for his implementation. So it is possible for a teacher to write an exercise for which they allow
several languages to be used. A clock icon is used when a due date to resolve the exercise is
defined. The status of the exercise is also given on each corresponding page. To write code,
there are coding frames with implementation instruction as mentioned before.

Students can also click on two buttons. The first one allows students to save their code.
Such feature allows students that cannot finish an exercise directly to save what they start
and resume later from where they were. In this case, the status will be set to “saved”. The
second button allows students to submit their code so that it can directly be automatically
checked (if it is implemented). Then the webpage will provide some feedback. For example,
teachers can implement unit test and if so, an error message such as “test with input 3 failed”
or “With input A your method should return B but it returns C instead” will be displayed.
Teachers could also implement performance checks if an exercise needs the code to perform
with an execution time that is not too long for example.

Once submitted for checking, the status becomes “corrected”. When the student decides
to correct his error(s), he can chose if he wants to start from what he has already written or if
he wants to delete his code and reset the exercise. Finally, when the exercise is correctly done,
the status is set to “resolved”. Note that for all status, the date is saved so that students can
see when they were working on exercises. Last feature is the submission menu which allows
students to see all their previous submissions (if there is any) with the corresponding feedback
generated at the time of each submission.

28

2.2.2 The architecture of Pythia

Peoooe Tasksf -~ ~» : E

f | | Sandbox |

v v E Sandbox |
Front-end Manager |< Dispatcher f&—— :
| : i | Sandbox | !

Email «——— Analyser

Figure 2.6: Pythia’s architecture (Figure taken from [12])

The Figure 2.6 is a simplified representation of the architecture of Pythia (for more details,
see [12]). The first element in that figure is the front-end. It groups all interfaces through
which students can interact with the platform. The main interface is the website. When
students resolve exercises on the web interface with their code, they provide some input using
this front-end. The theory of courses is also given through this component.

On Pythia, exercises are considered as tasks that will be executed. Fach task is defined
with a set of parameters such as the environment to use in order to run the code or a time
value before raising a time-out error if the task takes too long to end.

The manager, as its name suggests, manages all tasks. In fact, Pythia exercises are written
as program templates that are then completed with codes submitted by students. The action
of taking the code and filling the template is performed by the manager. He also forwards
complete programs to sandboxes through the dispatcher.

Programs are executed on those sandboxes. A sandbox is an environment that is isolated
and used to test an untrusted code. Programs written by students are not always safe and
we cannot be sure that they will not damage the platform. Using a sandbox is a preventive
measure.

The dispatcher is the component that links the manager and sandboxes. When it receives
tasks, it queues them so that if no sandbox is available, those tasks will be put on hold until
one is free.

29

Once the code is executed, it is then analysed. The analysis consists of a set of checks such
as unit tests, performance indicator computation or structural code checking for instance. The
checking has to be implemented on Pythia beforehand so it requires teachers to know how
they want to check if their exercises are correctly implemented by the students. For example,
if a teacher ask a student to write a method that takes an input and returns an output, he can
write unit tests. Those ones would give a set of input instances to the method implemented
by the student and check the output. Since the teacher knows what should be the result for
each of those input instances, he can compare the output from the student method with the
values that he expects to have. Of course, he can write that test in a script so that it is
executed automatically. The result of such test can then by displayed on the web interface to
the students as a feedback so that they can use it to correct themselves (if needed) directly or
it can be sent by email or saved on files for other purposes.

Last thing to note is that is that Pythia is in beta for now which means that there is still
work to do and room for improvements. With this thesis, we hope we can promote another
kind of checks that have not been used on Pythia so far.

30

Chapter 3

Related work

Since there are more and more tutorials on the web and people tend to learn by themselves,
it is not a surprise to see online learning platforms being developed. Indeed, Pythia is not the
only one of its kind and several other platforms exists. In this chapter, we will introduce some
of them and provide on overview of how they work.

3.1 Project Euler

The Project Euler website [13] counts more than 400 problems (see example in Figure 3.1)
that will challenge both mathematical and programming skills in order to be resolved. In fact,
to reach the solution, people need to reason mathematically then implement their reasoning
since computations are too complex to not use a computer. Once the correct answer is
encoded for an exercise, a solution to the problem is given as illustrated in Figure 3.2. This
particular example shows that Project Fuler seems to have some kind of performance test
since the solution begins with “To get a more efficient solution...”. Mathematical reasoning
are explained with formula that are then translated into pseudo-code. On Project Euler,
there is a post for all exercises so that the community can share their thoughts, their point
of view or different reasoning approaches. Users can also check their progression which is
tracked by the site. A lot of statistics are computed providing even more data to participants.
Unlike Pythia, Project Euler is aiming for people that already have both mathematical and
programming knowledge, it is more about reasoning than learning but it is still worth to
mention.

31

Jomy 109lo1g uo punoj woeqoid jo ojdwrexe uy :['g 9In3Iig
'] wajqosd 104 MBLAIBAC PEOJUMOQ]
“wnJioj ay3 ut | wajqo.d 4oy peatyy ayj o3 o

G161 ‘107 Jdv 87 ‘Uow uo paedwio)

891LEET damsuy

0001 MO)aq G 40 € Jo s3)dI3INW Syj |]e JO Wns sy} puly

'z st sa)di)nw asayy Jo wins ay| g pue 9 ‘g ‘¢ 395 am ‘g 1o ¢ Jo saydinw aJe 3By} | MO)aq SISQUINU JeINJeU SY3 B I51) aMm J|

1 woTqoad

G pue ¢ Jo sa|diiniy

oo] o] spuons | soaoous PSR ooy 19[n7 3o3foid

32

To get a more efficient solution you could also calculate the sum of the numbers less
than1000 that are divisible by 3. plus the sum of the numbers less than1000 that are divisible
by 5. But as you have summed numbers divisible by 15 twice you would have to subtract the
sum of the numbers divisible by 15.

If we now define a function:
Function SumDivisibleBy (n)

Details to be filled in
EndFunction

Then the answer would be
SumDivisibleBy (3) +SumDivisibleBy (5) -SumDivisibleBy (15)

Let’s look at the details of our function and take as example n=3.

We would have to add:

3+6+9+12+.... +999=3%(1+2+3+4+.. +333)

For n=5 we would get:

5+10+15+...4995=5*%(1+2+....+199)

Now note that 199=995/5 but also 999/5 rounded down to the nearest integer.

In many programming languages there exists a separate operator for that: div or \.
If we now also note that 1+2+3+.. +p=%2*p*(p+1) our program becomes:

target=5%9

Function SumDivisibleBy (n)
p=target div n
return n* (p*(p+1)) div 2
EndFuncticn

Ooutput SumDivisibleBy (3)+SumDivisibleBy (5)-SumDivisibleBy (15)

Figure 3.2: A part of the solution provided for example in Figure 3.1. This feedback comes from the Project Euler
website.

3.2 RubyMonk

RubyMonk [14] is, as its name suggests, a platform that teaches Ruby. Users follow a course
that leads them through all the Ruby language can do. Theory is given with concrete examples.
Then beginners can resolve small exercises based on both those examples and the related theory
(see Figure 3.3). For all of those exercises, the site provides unit test to check the correctness
of code. Once Ruby beginners have read all chapters, they can try to resolve problems that
requires them to make use of all what they learned. Like for exercises in the theory, functional
checks are implemented so that users can check their code and know if they are doing it right
or not. On Pythia, we want to provide more things such as checking structural regularities in
source code and not only functional check like RubyMonk does.

33

'991SqOM JUOINAQNY O} WO SOUWI0D JOYSUSDIOS SIYJ, "Peal A97) 1M PURISIOPUN SISUUISD(JRY) 9INS 9YeU 0} AT0dT[} S} UI PIPN[OUI dIR SISIIIXG :¢'¢ 2InNS1 g

I SW3150¥d GINTOSNN ¥ %001 | $103r80

uomnes s s sl

‘€ pue T SIaquINU BU) Ussmisq sell 2

Jsquinu 8} JI SUIWISIBP 0} POUIBW u==s22a aU) 8sN - SjuswinBie oM sexe) Jeu) poulsw e Buisn AL

"SBWWod yum welp Buneledss Aldwis Aq pouyisw au) 01 passed aq
ues Asu} JuswinBie suo uey) siow s| aJsu} J| Juswnbie sy .=S=<. pue poylsll Sy} S| *=FIT ‘alsH

Tesal]

NNy (,zeded,) xeput- [,s108s1T08, *, Taded, / ,¥o0xT, |

2po7) gdunxg

Aele sy}

ul uswnbie sy Jo uolyisod syl SPULL YIIUM * ==P=T pouls sy o} JuswinBie ue jo sidwexs ue ssisH

"s198(qo UsaM]Sq UOREIIUNWWOI Jo syied sy} sle spoylsw Jey) 198} sul Inoge July) o) dois nok
11 asuss sayew Juswnbie, sweu sy , poyjsw e o} sjuswnbie, sy} ps||ea S| UOHBULIOJU] [BUOIIPPE SIYL

asuodsal ajeudoidde ue nok

aAIB UBd)| S USRBLLIOI [BUCHIPPE 1 SAIB 0} slqIssed SI Y ‘SpouIsW S) BIA 19810 ue o) BuiNie) usu

sjuawnsie Yym spoyiaw Supjoau|

34

3.3 Try Python

Try Python [15] is like RubyMonk but for the Python language. Webpages are divided in two
parts: one is used to explain the theory and the other is the Python interpreter (see Figure
3.4). Code is directly included in the theory with a button that moves those instructions
blocks into the interpreter to execute them. Python beginners can then see the output of
those provided code fragments. Thanks to Try Python, users can become more familiar with
the programming language without needing to open a console as the interpreter is included.
If they want to try their own code, they are free to type what they want as well while keeping
the theory next to it.

35

*991sqom Uo3£J AIT, 97} WOIJ SOUWIOD JOYSUAIS ST T, "WS1I 9y} uo Ind 193o1dIojur uoylAJ o) U0 PaINIAX dq AP22IIp URD AI091) Ul paure[dxs sjyuewiSely opo)) :§°¢ 2anSiq

| <<

-

E-/L <<<

4

£/4 <<

1JOOTH Y3 SUJNIAJ UOTSTATP Jo3a3ul # <<<

s

7/(945-05) <<<

4

2p0D> SE SUL] =2Wes 3yl U0 JUSWWOD B pue # 7Z+7 <<<
4

74T <<

JuBWWod B ST STY| # <<<

4

7+ <2<

u533udua3uT 2y3 s1dnuusIUT J-Touluo)

1Tx2 01 2woyod pue ITOSUOD 2yl JeITD 01 12sad adAL
pJco4 T3eydTy Aq T y @ uoylfyg Aap

L ETTJBATTS vo 7977 uoylfy

uoREILBWNICA | INeqY | ajosuc)

<<<

€-
/1 <5<
T
/L "
1d007f 3YI SUANIFA UOLSIALD J3B3IUT # <<<
S
7/(9x5-05) <<<
¥
8p0> Sp U] BWDS BY] UO JUBWWOD D PUD § THT €<
¥
Zig tee
JuBLWOD D S1 SIY] # <<€
¥
T+ <<t
:2|dwexa Jo4 -Buidnoib Joy pasn aq ued sesayusled (D
10 |easeqd ‘ajdwexa 1o}) ssbenbue| Jay10 350w ul 831| 1snl oM / pue . ‘- ‘+ siojesado ay) :piemiofiybiels s1 xequAs
s21dXg “2njeA U3 23LM |IM 31 pue 11 18 uoissaudxe ue 2dA3 ued noA iolendjed 3jduwis e se s1oe J1aadisiul Ay

SlaquinN

Bng

e poday |+ siaquinN 'z

- Tyied [euoiny uoyhd 1| [1581] [BeN| (edd| [151] soedspion

Jeno1n] uoiAg aAndeIRIUT Uy T 0 uoaAg Ay

36

3.4 Code School

A last example of a learning platform is Code School [16]. It provided courses for Ruby,
JavaScript, HTML/CSS and iOS applications development. Code School like previous exam-
ples provides theory to learn as well as exercises to resolve. Functional checks are included to
make sure users achieve what they are asked to do. Each course starts with a video giving an
overview of the main concepts (see Figure 3.5). Then beginners have access to more complete
theory while they are resolving exercises. In case they are struggling to find the answer, they
also can have a look at some hints that guide them to the right path as illustrated in Figure
3.6.

FROST-PROOF FUNDAMENTALS

Primary DOM selectors:
+ Element selector
¢ Class selector

» 1D selector

Learn more about advanced
selectors like child & sibling:

Link *1

Figure 3.5: Courses start with an introduction video

37

*931SqPM [00TDS SPO)) 1) WIOIJ SOWO0D JOYSUSDIIS SIY], "POPaau J1 papraoid are sjulf] :9°¢ 2InSi g

<Tu3y/>
<Apoq/>
<UOTID95/>
<Ispesy/>
<Ty/>untIodwy SOYUSMOUS S ,USAS<TU>
<Ispesly>
<,JUS]U0D,=SSETD UOTIDIS>
<Apog>

<pesy/>
</ uSS2°9TA}S,=J=Iy ,199UYsaTA3s,=To1 AUTT>
<8731 />untIoduy SOYSMOUS S ,USAS<STITI>
<pesi>
<,U3,=PueT TUIU>
<Tw3y =dA3oopi>

Bey <peau> ay) ulYum sajAls e anoway

Bupujeway JuIH T JUIH PN d

v

{I9]uso :ubITE-1¥9]
ixdzz :2zZTs-juoJl
{DBIEP9# :I0TOD
by
{
:xdpoz :ulpIM
:xdopz :Putpped
togne o :uthiew
190¢0e04 pTT0S xXdT :IspIO
} jusjuon-
{
xdpT :9zZTS-3UOT
!JTI9g-sUeS ‘TETIE ‘PUOyR] :ATTWERI-1UOT
{8p97qp# :I0TOD
} &poq
<aTA3s>
</ .850°9TA3S,=J91U ,339UsaTA3s, =T8T HUTIT>
<9T3T3/>umTIodud 90YSMOUS §,USAS<STITI>
<peay>
<,us,=buet Twiy>
<ty 5d&300p;>]

s] Junyxepus

"}29ysajA}s [BUISIXa UB UO punoy peajsul sl 55D |[B 38y os bey <pe=i> ay) lojejey

SLITHSITALS TVNHILXI

38

3.5 Remarks regarding Pythia

Most of the previous examples are focusing on one language but there exists similar platforms
for all programming languages. It is interesting to note that Pythia shares some features
with all those platforms. It provides a set of courses on different programming languages (see
Figure 3.7). Exercises are provided with the theory for students to check if they understand
what teachers try to teach them. Functional checks ensure correctness of code written by
students. Depending on what is asked to be done, it is also possible to compute performance
indicators if needed. Pythia provides a good set of features we meet in other platforms.
Considering all those examples, learning platforms need a mix of theory and exercises that
can be automatically checked to evaluate students understanding.

39

uoixauuodsg

Ll

0¢
8

142

S

sawa|qoid

¥i0celoe

¥i0celoe
€10¢-¢loe

¥i0celoe

ansawag

e1eQ fuobain

Ined awoir
SUqWIo) UBNSEAIS
[eqig ualpy
SUqWIo) UBNSEAIS

a|gesuodsay

sodengue] Surumreldold [RISASS 10] sosIdIoxe sopraold eIylLg :2°¢ 2an31g

“a|qesuodsal auuosiad B JUBWSAIIP 1BIDBIUGD Z3[|INBA ‘9INPOLL UN P S321218%3 S3| J9AE SDN0S ap SED U,

| senbiyeuojul SaWRISAS [26Z1LANIST]

anbiuyobie] g uonanpenul [oLLANIST] @
uonewweiboid g e uononponu [LOLLANIST]

g enbijewio] [zorlavs41l @

BART UB Sanbiwyjuoble saoniex] e

s|npow np wopN

sajnpo

S3INPOIN ~ $IN0D SAWRIMoId PI0g 3P NE3jeL UV UIA3IS ()

40

Chapter 4

Problem statement

Now that all materials needed have been introduced, this chapter focusses on the problem we
try to solve. First, it is important to define what this thesis aims at : good coding checks.
Then, Java bytecode and AST approaches will be discussed using what we have learned in
chapter 2.

4.1 Functional checks and good coding checks

When thinking about checks that would help Java beginners, several types of checks come to
mind. At this point, the two main group of checks should not be confused : functional checks
and good coding checks.

4.1.1 Functional checks

On one hand, there are functional checks. Those ones try to find errors in code that makes
the program not working as intended. For example, if we ask a student to write a method
that computes the square of a number and his code provides the cube, a functional check
could detect that he used the number 3 in his formula instead of 2. A better approach
would be to write unit test that will try several values as input and check the output. This
example is very basic but it is just to show what this kind of check is looking for. Does the
method/class/program really perform the task it is written for ? Does it have the expected
behaviour ? Functional checks helps answer those questions.

4.1.2 Good coding checks

On the other hand, there are good coding checks. They want to teach good habits while
writing programs. Unlike functional check, they will not verify if the code is correct or not.
They just help beginners write code that is readable and matches standard rules. For example,
if a student writes something like “if(anyBoolean==true)”, a good coding check could notify
him that the “==true” part is useless and should not be written. Of course, if a program does
not satisfy good coding checks, it could still work. However, detecting this kind of mistakes

41

will help the teacher to realize that maybe his student does not really understand how the
Boolean type works. Then he can provide specific explanation to help a Java beginner and
remedy the gap in his knowledge.

4.1.3 The importance of using coding checks

Why is it so important to provide coding checks ? Even if bad coding could not prevent a
program to run as expected, Java beginners need to avoid it. Such checking is interesting to
have on a teaching platform as Pythia is for few reasons.

First, good coding should be taught as soon as possible because when human beings learn
to do something, they tend to build some habits in their mindset. After a certain point, it
quickly becomes really hard to lose those habits even if they are bad. For instance, a person
who always makes his writings corrected by someone else without looking at the corrections
will always misspell some words. Good habits need to be taught during the learning process
so that it becomes automatic and clear in the head of the Java beginner.

Second, as said in the previous paragraph, coding checks could help teachers to catch
students’ lacks in programming skills.

Third, automatic checking allows teachers to save time as it provides some kind of prepro-
cessing by cleaning dirty code. Furthermore, it generally improves the readability of the code.
From a student point of view, the beginner can directly use the feedback to correct his code
as well as to learn by himself. It is also known that several students are sometimes too shy
or fear to ask questions about something they do not fully understand. Last point is the fact
that the feedback is provided at the time students do their homework, they do not have to
wait the correction.

More generally, there are also some advantages while ensuring good coding style as it could
enhance a program regarding some criteria [17] such as:

e Modularity: In the sense that for example, it could promote the declaration of explicit
constructors or the use of accessors to access private variables.

e Typography: When we look at commenting practices (Is the source code well docu-
mented? Are the comments not too long?).

e Clarity: When we promote naming convention with checks (variable names are explicit,
not too long, etc.).

e Effectiveness: For example, checks to promote variables with small scope.

e Reliability: An example is a check to force the programmer to write default blocks in
switch statements.

42

4.2 Comparison between Java bytecode and AST approaches

As mentioned while introducing the selected Java coding tools in chapter 2, two different
approaches were used to analyse code. Findbugs uses Java bytecode while Checkstyle and
PMD use AST. Is one approach better than the other ? To provide an answer to this question,
we compare those solutions according to several criteria.

4.2.1 Expressiveness

Using Java bytecode, it is possible to make use of all the information that is not lost in the
bytecode. In fact, the process from source to bytecode tries to optimize the code by removing
everything that is unnecessary for the program to work. For example, while reading Java
bytecode, variable names are omitted. It only keeps what is needed to execute the task. For
the rest, everything can be expressed since it corresponds to what the machine really executes.
If there was something that could not be expressed, that would mean that the machine cannot
perform the corresponding instruction. It is a bit different for AST. The expressiveness of
that kind of tree depends on what is implemented for nodes in order to represent instructions.
Imagine, we use AST with a node implementation that would only handle numbers. Then the
expressiveness of such AST is limited to numbers. In the case of Checkstyle and PMD, because
both tools want to be as complete as possible, both implementations provide complete API
making them very expressive. Looking at this criterion, both approaches are almost similar
except for variable names and other bytecode optimizations which make the AST approach a
bit better.

4.2.2 FEase of use

Java bytecode is machine language and it is not very easy to use by inexperienced programmers.
That is why higher-level languages were made. For that reason, writing checks based on
bytecode is quite hard and not really intuitive. ASTs are more convenient to work with.
As Checkstyle and PMD are implemented, each node has one type which corresponds to a
Java instruction. Thanks to that, it is easy to look for patterns. The main drawback is that
while using ASTs, we need to deal with tree structure as nodes are placed in a hierarchical
model. Consequently, it is important to understand nodes level as well as parent/children
links. Speaking of ease of use, ASTs are more intuitive and convenient to handle.

4.2.3 Conclusion

Based on those two criteria, it appears that both the bytecode(Findbugs) and AST(Checkstyle
and PMD) approaches are pretty similar but the latter is better for us. Both approaches are
expressive enough to provide lots of detectors. Working on bytecode seems more convenient
for finding bugs because the code is optimized so it is easier to get to what a code really does.
On the other hand, AST are more convenient for detecting bad coding habits. It is better for
coding checks because it does not lose any information from the source code so that checks
on variable name can be implemented. Another advantage is that AST keep the structure of
the program which might be useful to identify bad patterns we want to look for. For those

43

reasons, we chose to use Checkstyle which is really easy to extend. We did not go with PMD
because it is very similar to Checkstyle but less documented and so a bit less convenient.

44

Chapter 5

Implementation

This chapter explains how we implement our solution. We will describe how we decided to
use Checkstyle and how we integrate it on Pythia.

5.1 Using Checkstyle

Checkstyle provides a lot of checks but depending on users needs, it is up to them to configure
the tool accordingly. Following that idea, we went through all checks and extracted those
that would handle errors we wanted students not to make. The first step is to identify which
Checkstyle checks handle common errors that are often made by Java beginners. We do
not look for advanced detectors since we are focusing on students that learn a programming
language. However, the use of an analysis tool such as Checkstyle requires that we configure
it according to the exercises we want it to check. In other words, Checkstyle’s usage is case
dependent. For example, it would not be useful to execute a check on method name if we just
ask students to write instructions in the body of an “if-statement”. In the validation chapter,
we will create a concrete exercise and we will describe how we chose checks for that particular
exercise. Among the implemented checks there are few that are generic and could be useful
for all kind of exercises. An example of such checks is the “OneStatementPerLine” detector or
at a less generic level the “SimplifyBooleanExpression” check. If CheckStyle does not provide
a check that we need, we also have to possibility to write custom checks.

5.2 Extending Pythia

The integration with Pythia can be a bit tricky to understand for everyone who does not
have the opportunity to dig into the Pythia implementation files. For that reason, we will not
explain everything in detail but we will just give an insight of how it works by going through
the most important file to explain.

45

5.2.1 Defining an environment

As explained in chapter 2, Pythia can handle several programming languages. In order to
do that, we can define environments for which the platform will create a virtual machine. In
our case, we need a Java environment with Checkstyle. In the Pyhtia environment folder,
we create a new folder that contains a makefile and a rootfs-config.sh that specifies all the
libraries that are needed in our environment to perform our check. Note that we also need to
include the Checkstyle jar and configuration file as detailed earlier.

5.2.2 Writing a task
Exercises on Pythia are defined as tasks. Each of them has 4 parameters that have to be set
to specify resource allocation. The corresponding task is shown in code fragment 5.1

e The time limit before the task will be considered as failed if no result is generated.

e The memory granted to the task.

The space on the disk that the task can use.

The size limit to print the output.

Code 5.1: An example of task resource allocation

{
"environment": "nqueens",
"taskfs": "nqueens-java.sfs",
"limits": {
"time": 60,
"memory": 10000,
"disk": 500,
"output": 1555524
}
3

Note that other files are created for a task but are omitted here since we do not want to
go too deep in detail.

5.2.3 The server part

In order to create an exercice on the server of Pythia, two files have to be implemented.

The first one is a HTML file that implements the web page of an exercise. An example of
such implementation is shown in the code fragment 5.2. It is the file we have implemented
for an exercise that we used in our validation part (see section 6.1.2). For that exercise in
particular, we have defined two main text area. One text area is the panel that contains the
class template to be filled by students while the other text area is used to display the output
of checks that have been implemented beforehand. There is a third text area for students
to encode their matricule number so that we can identify them. We also add a button so
that once their code is inserted, students can click on it to perform those checks. In fact, the
submitted code is saved then is used in the second file that we described below.

46

Code 5.2: The implementation of the webpage for the Nqueens exercice described in the section 6.1.2

<!DOCTYPE html>
<html lang="fr">
<head>

<title>Pythia</title>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min. js"
></script>
<script>

$ (function ()
{

function isEmpty($el){
return !'$.trim($el.val());
}

$(’#send’) .click (function(){
$(’#send’) .attr("disabled", "disabled");
$matricule = $(’#matricule’);
if (isEmpty($matricule)){
$(’#matwarn’) .html ("Matricule manquant");
$(’#send’) .removeAttr ("disabled") ;
}
else {
$(’#matwarn’) .html ("Merci de patienter");
var mytest = encodeURI($(’#code’).val());
var myvar = ’{"input":"’+mytest+’","id": "’+$matricule.val()+’"}’;
$.ajax({
url: "/submit",
type: "POST",
data: myvar,
contentType: ’application/json’,
success: function(data) {
$(’#back’) .html (data) ;
$(’#matwarn’) .html ("");
$(’#send’) .removeAttr ("disabled") ;
}
b

)
B

</script>

</head>

<body>

<p><textarea id="code" spellcheck="false" style="width:700px;height :500px;
float:left;" class="form-control pythia-input" name="code">

[*x

* The Goal of this class is to check if a given board is a solution to the
Nqueens problem.

*/

public class NqueensSolver {

/ **

47

* In this main method, you should only check the size of the board (
is there
* a solution for all size ?) and then call you method.
*
x/
public static void main(String[] args){
int [] board={2,0,3,1}; // An example of board
}

/ **
* This method should call all the two auxiliary methods needed to
check the board
* and print in the console if the board is a solution or not.
* @param board is the board to check
*/
public static void isSolution(int[] board){

}

/ **
* This method should check if there is any line conflict in the board

* @param board is the board to check
* Q@return true if there is no line conflict
*/

public static boolean checkLine (int[] board){

}

/ *x
* This method should check if there is any diagonal conflict in the
board.

* Hint: The method "Math.abs" could be useful.

* @param board is the board to check

* Q@return true if there is no diagonal conflict

*/
public static boolean checkDiagonal (int[] board){

}

}

</textarea>

<textarea id="back" style="width:500px;height :500px;" disabled spellcheck="
false" ></textarea>

</p><p>Matricule : <input type="text" id="matricule" /><span id="matwarn"
style="color:red;">
</p><p><button id="send" class="btn btn-
default">Envoyer</button></p>

</body>

</html>

The second file is a Python file in which we describe how Pythia should interact with
the web page. In our previous example, the submitted code was just saved so we define what
should be done with that code in our Python file (see code fragment 5.3). For that exercise, we
wanted to run Checkstyle on the code and that is what we write in the Python file. When our
checks are performed, several outcome can happen. We could have a timeout or an overflow
error and if so we print a message to notify the student. If checks are correctly executed, the

48

feedback generated is displayed on the exercise page so that students can see it and correct
their code according to it. In our case, we also decide to save both the submitted code and
the feedback so that we can analyse those results. In the python file, we decribe what checks
to perform and what to display depending of the output of those checks. In our example, we
decided to directly print the output because we have decided that it is clear enough. However,
it would be possible to make other computations or analyses on the output and then display
a message based on that output.

Code 5.3: The implementation of the Python file for the Nqueens exercice described in the section 6.1.2

#!/usr/bin/python
-*-coding: utf-8 -x
from bottle import request, route, run, response, static_file, error
from json import dumps
import json
import socket, sys, re
import codecs, time,urllib.parse

myvar = 1

def count (check):

if (check == "TRUE")
succeed = codecs.open(’succeed.txt’,’r+’,’UTF-8"’)
value = succeed.read ()

succeed.write("1\n")
succeed.close ()
else
tried = codecs.open(’tried.txt’,’r+’,’UTF-8’)
value = tried.read()
tried.write("1\n")
tried.close ()

@route(’/’, method="GET")
@route(’/’, method="POST")
def home () :
return static_file(’index.html’,root=’/home/admin/server/’)

@route (’/submit’, method="GET")
@route (’/submit’, method="POST")
def submit ():
global myvar
ts = time.time ()
myvar += 1
if ’application/json’ in request.headers[’Content-Type’]:
requested = request. json
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect ((’localhost’, 9000))

filename = requested[’id’]J+"_"+str(ts) +"_"+str(myvar)
newjson = ’{ "message": "launch", "id": "’+filename+’", "task": { "
environment": "nqueens", "taskfs": "nqueens-java.sfs", "limits": {

"time": 60, "memory": 32, "disk": 50, "output": 1024 } }, "input":
"’+requested[’input’]+’"}’
sock.sendall(newjson.encode(’utf-8’))

49

returned = sock.recv(15024)
sock.close ()
returnedd = json.loads (returned.decode(’utf-8’))
infile = codecs.open(filename+’.in’,’w’,’UTF-8’)
s=urllib.parse.unquote (requested[’input’])
infile.write(s)
infile.close ()
if returnedd[’status’] == ’success’
outfile = codecs.open(returnedd[’id’]+’.out’,’w’,’UTF-8")
outfile.write(returnedd[’output’])
outfile.close ()
if ".java" in returnedd[’output’]
count ("FALSE")
else
count ("TRUE")
return returnedd[’output’]

elif returnedd[’status’] == ’overflow’ :
newjson = ’{ "message": "Erreur lors de l’exécution !", "status":
"failed", "output": "Votre implémentation génére un résultat dé
passant la mémoire allouée & la tédche !"}’
return (newjson)
elif returnedd[’status’] == ’timeout’
newjson = ’{ "message": "Erreur lors de l’exécution !", "status":
"failed", "output": "Votre implémentation dépasse la durée
allouée pour la téache !"}’
return (newjson)
else
newjson = ’{ "message": "Erreur !", "status": "failed", "output":

"Une erreur est survenue."}’
return newjson
else:
return ("None")

run (host=’ec2-54-194-189-76.eu-west-1. compute.amazonaws.com’, port=8080, debug
=True, reloader=True)

5.2.4 Remarks regarding the integration of our checks

While extending Pythia with coding checks, there are two approaches to make use of those
checks. A first way would be to create exercises that would put students in situations where
we expect them to make errors we want to correct. In other words, we make specific exercises
just for coding checks. The second approach would be to add coding checks to other exercises
so that students would get both feedback from functional check and coding checks. For our
validation part described in next chapter, we decided to write a specific exercise so that the
result are really focused on coding checks. That being said, if Pythia is extended with such
checks in the future, teachers would have the opportunity to chose either way by telling to the
Pythia development team what he wants.

50

5.2.5 Teachers interactions with Pythia

So far we have talked about how we implement our work on Pythia but not about how could
teachers use that platform, how would they use Checkstyle, what do they have to do concretely.
In fact, teachers do not interact directly with Pythia, they need to contact its development
team to use the platform because they do not have all the access to it. The Pythia team serves
as an middleman between teachers and the platform.

If a teacher wants to provide his courses using the platform, he needs to give corresponding
PDF files to the Pythia crew which then uploads it on the server and make it visible on the
web interface. Once it is done, students can subscribe to those courses and read them directly
on the website or download the PDF.

For the exercise, it is almost the same. A teacher has to provide exercises in a text format
but also specify what kind of correction (functional checks or performance indicators checks or
other) he wants the platform to perform and what kind of feedback he wants to receive as well
as how he wants it. Given all those specifications, the Pythia team implements both exercises
and checks according to what the teacher ask them to do. For the feedback, the teacher can
ask to receive it directly (for example by mail) or ask the team to make further computations
on that feedback and then forward the results. The teacher is also free to chose the format of
that forwarded feedback (for example, do they want the code as a Java file, the results as an
XLS file, etc.).

If Checkstyle would be used on Pythia, it would require someone in the development
team to be able to use that tool from the implementation of the configuration file to the
implementation of customs detectors. Since the choice of checks to use is up to the teacher, he
needs to know how the tool can be used and what it can look for. In the end, teachers would
need to be aware of the possibilities that Checkstyle can offer while at least one member of
the Pythia team would need a good knowledge about that tool.

51

Chapter 6

Validation

In this chapter, we describe the three experiments we made.

6.1 First experiment

Objectives:

Integrate Checkstyle to Pythia
Create an exercise for students
Write custom checks

Collect feedback from students

The objectives for this first experiment were simple. If we wanted to use Checkstyle on
Pythia, we had to explain how we can integrate the tool on the platform. To do so, we did
not only had to explain how to install the tool on the platform but also how it could be used
for an exercise. Since it is the first time we explain how we used Checkstyle, we also wanted
to write customs checks so that we could evaluate if it is a difficult task or not. After the
completion of the exercise by the students, we have collected their feedback.

6.1.1 Methodology

As announced in the previous chapter, we decided to use Checkstyle to provide a set of coding
checks for Pythia. Using that tool has facilitated our task a lot since it already provides a lot
of coding checks. In this section, we describe the process we went through to provide Pythia
with such a set of checks. Keep in mind that we are focusing on Java beginners which means
that we need basic checks.

Create an exercise for students
To evaluate students’ coding style, we needed them to write programs which can be achieved

by providing them exercises to resolve. In order to illustrate the need of coding checks, we
created one exercise that then has been integrated in Pythia. With that exercise, we tried to

52

put students in situations where they were more likely to make a mistake for which we had a
check. Therefore, students tried to resolve our exercise then checked their code with coding
checks and corrected themselves using the feedback generated by Checkstyle.

Choose checks

In the corresponding Background chapter section, we said that Checkstyle groups its checks
into several categories and that the most interesting category for us is the one of “Coding
Problems”. Looking at these specific checks, they are more than 40 and it is clear that
depending on what is needed, it would not be appropriate to use all of them. Exercises that
are implemented on Pythia are not large projects with hundreds of lines of code and do not
require the use of complex data structures. When a teacher creates an exercise, he should be
able to predict most of the code that will be provided by students. Thanks to that piece of
information, Checkstyle should be configured accordingly. For example if we know an exercise
does not require a switch case, there is no reason to use the “MissingSwitchDefault” check.
A Checkstyle user should always be aware of what he wants the tool to look for. Beside case-
dependent checks, there are some that are more generic and could be applied on all kind of
exercises. Checks such as “OneStatementPerLine” are always useful regardless of what needs
to be implemented for the exercise. Teachers that would want to use Checkstyle should be
aware of what the tool can help them to check and based on that chose which check to use. To
do so, he could either visit directly the Checkstyle website or either the Pythia development
team could tell him (for example by providing a list of the detectors) what they can look for
using that tool.

Integrate the exercise and checks to Pythia

As one of the goals of this thesis is to provide Pythia with a set of coding checks, the exercise
that is described in the next section has been uploaded on that platform. For that purpose,
we will explain how we can create a Pythia web page that host our exercises and display the
feedback to students. We want both the exercise and the generated feedback to be clearly
understandable by students.

6.1.2 The exercise

Now that all the steps of our solution have been explained, we can go further and talk about
what has been done concretely.

As an exercise, we really want to observe if students have bad coding style while writing
some expected patterns and so we do not want to let them too much freedom. To do so, we
will explain in detail what they should do and what kind of instructions they should use.

The Nqueens problem

We chose to ask students to resolve the Nqueens problem. To limit the way they could manage
to do it, we give them precise instructions. The expected program takes an array as input

53

and prints in the console whether that array represents a chess board that is a solution to the
Nqueens problem. In order to keep this exercise simple, the input array is a one dimension
array whose elements are integers that represents the line at which a queen is placed on the
board. For example, if the first element is 5, it would means that the queen on the first
column of the board is placed on the fifth line and so on. To resolve this problem, we ask
students to fill a class template which contains a main method and three other methods. In
the main method, students have to check the size of the input array since there is no solution
for boards whose size is smaller than 4 and then call a first method. This one should only
call the two auxiliary methods and prints if the board is a solution based of the results of two
other methods. We defined those two auxiliary methods so that one checks if there is any line
conflict thus if there are queens that are placed on the same line of the board, and the second
one would check diagonal conflicts. The expected solution to the exercise is shown in the code
fragment 6.1.

54

Code 6.1: The exercise resolved as expected

/ %%
* The Goal of this class is to check if a given board is a solution to the
Nqueens problem.
*/

public class NqueensSolverBis {

/% *
* The user has to give an input board to check.
* In this main method, you should only check the size of the board (
is there
* a solution for all size ?) and then call you method.
*
*/
public static void main(Stringl[] args){
int [] inputBoard={2,0,3,1};
if (inputBoard.length<4){
System.out.println("There is no solution for the input

board.");
}
elseq{
isSolution(inputBoard) ;
}
}
/%%

* This method should call all the auxiliary methods needed to check
the board and
* print in the console if the board is a solution or not.
* @param board is the board to check
*/
public static void isSolution(int[] board){
if (checkLine (board) && checkDiagonal (board)){

System.out.println("The board is a solution !");
}
elseq{
System.out.println("The board is not a solution !");
}
}
/* *

* This method should check if there is any line conflict in the board

* @param board is the board to check
* @return true if there is no line conflict
x/

public static boolean checkLine (int[] board){
int linel, line2;
for(int column1=0; columnl<board.length-1; columnil++)
{

for(int column2=columnl+1l; column2<board.length;
column2++)

{
linel = board[columni];
line2 = board[column2];
if (linel == 1line2){

55

return false;

}

return true;

}

/ % *
* This method should check if there is any diagomnal conflict in the
board.
* Hint: The method "Math.abs" could be useful.
* @param board is the board to check
* Qreturn true if there is no diagonal conflict
*/
public static boolean checkDiagonal (int[] board){
int linel, line2;
for(int columnl1=0; columnl<board.length-1; columnl++)

{
for (int column2=columnl+1l; column2<board.length;
column2++)
{
linel = board[columni];
line2 = board[column2];
if (Math.abs(linel-1ine2) == column2-columnil){
return false;
}
}
}

return true;

56

Choice and implementation of checks

In order to choose which checks we need, we have to go through the exercise again. This
section introduce some detectors that we implemented ourselves. We do not expect teacher to
do that but as we already discuss, that is the kind of work someone in the Pythia team should
be able to do if Checktyle was used. The implementation of such detectors are not that hard
since the API is well documented on the Checkstyle website [6]. The difficulty comes from the
AST structure but as soon as the user is familiar with that structure, it is straightforward to
implement custom detector.

Checking the number of method

Because we provide students a template to fill, we do not expect them to write additional
methods. We implement a “MethodLimitCheck” (see code fragment 6.2) that we customize
so that it raises a warning of the program contains more than 4 methods (as the template
counts 4 methods already). Note that we set the default limit value to 2 but another value
can be specified into the Checkstyle’s configuration file (as shown in the code fragment 6.5).
We have implemented it with the value 2 because it was more convenient to test it with that
value, there is no further reason behind it. For all detectors that have a default value for
something, if there is a mutator method in their implementation, that value can be changed
directly using the configuration file. It is a really practical feature since it allows the user to
not have to modify the implementation of the detector or to dig into its code. The tool can
perform that check simply by counting the number of method definition tokens in the AST.

Code 6.2: The method limit check

public class MethodLimitCheck extends Check

{
private static final int DEFAULT_MAX = 2;
private int max = DEFAULT_MAX;

@0verride
public int[] getDefaultTokens ()
{
return new int [J{TokenTypes.CLASS_DEF, TokenTypes.INTERFACE_DEF};
}
@0verride
public void visitToken(DetailAST ast)
{
// find the OBJBLOCK node below the CLASS_DEF/INTERFACE_DEF
DetailAST objBlock = ast.findFirstToken(TokenTypes.0OBJBLOCK) ;
// count the number of direct children of the O0BJBLOCK
// that are METHOD_DEFS
int methodDefs = objBlock.getChildCount (TokenTypes.METHOD_DEF) ;
// report error if limit is reached
if (methodDefs > this.max) {
log(ast.getLineNo (),
"too many methods, only " + this.max + " are allowed");
}
}

// Setter for the max limit
public void setMax(int limit)

{

57

max = limit;

Checking the input

The main method should check the size of the input array before calling the next method.
To do that, we expect and we want that students use an if-instruction. As it is a really case
dependent check, we have to implement it as shown in code fragment 6.3. While writing a
Checkstyle detector, we have to know from which kind of AST’s tokens we want to start the
search. In this case, we are looking for a method definition token. Then, we check the method
name as we are looking for the main one. Once found, we just make sure that there is an
if-instruction and if it is not the case, we raise a warning. Note that this check is not really
accurate since students could write an if-instruction for anything else so that the check will
not see any problem. We hope students would check it as expected but results describe in
section 6.1.2 should tell if that is a good assumption.

Code 6.3: The input check

public class InputCheck extends Check

{
@0verride
public int[] getDefaultTokens ()
{
return new int [J{TokenTypes.METHOD_DEF};
}
@0verride
public void visitToken(DetailAST ast)
{
DetailAST main = ast.findFirstToken(TokenTypes.IDENT);
if (main.getText () .equals("main")){
DetailAST body = ast.findFirstToken(TokenTypes.SLIST);
if ((body.findFirstToken(TokenTypes.LITERAL_IF)==null))
{
log(ast.getLineNo(),"input.check");
}
}
}
}

Checking conditions

Java beginners tend to make conditions more complex than they really are. When they do
not fully understand how Boolean works, they sometimes write “==true” or use “==false”
instead of “/”, the NOT operator. Checkstyle brings in a “SimplifyBooleanExpression” which,
as its name suggests, would notify the developer if a Boolean expression can be simplified.

Checking for-depth

To check diagonal conflicts, we expect students to use two iterators to go through the array;
one to take each element one by one and the other to compare to other elements. We use
the “NestedForDepth” check and we set the limit at 2 so that a warning is raised if the tool

58

detects nested-for with a depth higher than 2. We could also add a warning if students use a
depth lower than 2 but as they are beginners, we do not expect them to find another way to
implement the method but maybe they would come up with something correct with a lower
depth that is why we chose not to set a lower bound.

Checking nested if

We want the students’ code to print that the board is a solution if both auxiliary methods
return true (if both have detected no conflict). We can expect that students would use nested-
if and print a result accordingly. With the check shown in code fragment 6.4, we want them
to remplace“if(A){ if(B) {...} } 7 with “if(A && B){ ... }”. It is not always good to merge
conditions especially when they are big or complex but it is not the case here.

Code 6.4: The nested-if check

public class NestedIfCheck extends Check

{
@0verride
public int[] getDefaultTokens ()
{
return new int [J{TokenTypes.LITERAL_IF};
}
@0verride
public void visitToken(DetailAST ast)
{
// Go to the body of the if statement
DetailAST objBlock = ast.findFirstToken(TokenTypes.SLIST);
if (objBlock !=null){
// Get the first instruction of that body
DetailAST firstChild = objBlock.getFirstChild () ;
// Get the last instruction (using previous because
the last one is "1}")
DetailAST lastChild = objBlock.getLastChild ().
getPreviousSibling () ;
// Check if the first instruction is an "if statement"
and if there is no other
// instruction in the body. That would means that the
two conditions could be combined.
if (firstChild.getType () ==TokenTypes.LITERAL_IF &&
firstChild.equals(lastChild)){
log(ast.getLineNo(),"nested.if.check");
}
}
}
}

Auxiliary checks

We add two more checks to those that were just explained. The first one is the “Neste-
dIfCheck”. We are not sure students would use nested-if outside the case explained in the
previous check but still if for any reason they use it, we do not want them to code it with a
depth greater than 2. Maybe that check would never be used in this exercise but it is more
as a precaution since students can be so unpredictable when they code. The other additional

59

check is the “OneStatementPerLine” that will ensure that students will not write more than
one instruction per line.

Writing the configuration file

After that checks are chosen or implemented, we write a configuration file (see code fragment
6.5). That file allows Checkstyle users to specify which checks they want to perform and they
also can customize those checks by changing a variable if there is one (for example, in this
case we can set the method limit check to 4) or modifying the message that is display when a
warning is raised. We expect a Pythia member to be able to write that file but a teacher could
be able to do it as well since it is not that difficult. The first line is mandatory, “Checker” is
the root module of configuration file. The second line defines the severity of errors that would
be detected by the detector that are specified in the rest of the file. Because we think that
errors handled by our set of detector are not that critical, we chose to go with the