
Container orchestration

Antoine Vander Meiren & Charles Vandevoorde
June 10, 2018

ECAM Brussels



Slideshow layout

Orchestration introduction

Orchestration solutions

Kubernetes example

1



Orchestration introduction



Deployement: The old school way

2



Deployement: The old school way

1. Manual
2. Scripting
3. Infrastructure automation

3



IT trends

Micro-services introduces complexity in deployement
Infrastructure as Code (IaC) provides a new paradigm to

manage servers
Containers simplify applications packaging

4



What’s an orchestrator?

• Facilitates complex containers deployement
• Abstracts services mapping on servers
• Container’s management (monitoring, restarting, killing, …)

5



Why orchestrating?

• Host provisioning
• Containers instantiation
• Failed containers rescheduling
• Containers external interfaces configuration
• Scaling

6



Orchestration solutions



Existing solutions

• Docker Swarm
• Kurbenetes
• Others

Points of comparaison:

• Added value
• Inconvenient
• Use-cases
• Components

7



Docker Swarm

• Docker’s orchestrator
• Simple to configure
• Well integrated with other Docker solutions
• Use-cases

Small deployments or experiments

8



Docker Swarm: Components

9



Docker Swarm: Components

Manager nodes distributes tasks across the cluster
Worker nodes run Docker images
Key-value store keeps configurations and some states distributed

across the cluster

10



Kubernetes

• Google open source solution based on Borg
• Highly modulable (network stack, container runtime, …)
• High learning curve
• Use-cases

Microservices, medium to large clusters

11



Kubernetes: Components

12



Kubernetes: Master’s components

API server exposes a front-end to control the Kubernetes cluster
Controllers evaluate and propagate changes
Scheduler dispatchs pods on nodes based on the policy in place

Key-value store (etcd) keeps configurations and some states
distributed across the cluster

13



Kubernetes: Nodes’ components

Kubelet controls groups of containers one node
Proxy is a network abstraction

14



Related work

• Apache Mesos is a distributed systems kernel
• Apache Marathon is an orchestrator built on Apache Mesos
• Nomad is another orchestrator built for simplicity
• OpenShift is built on top of Kubernetes to provide a

self-hosted PaaS container platform
• OpenStack is an abstraction of machines providing a

self-hosted IaaS

15



Functionalities

Usual features of an orchestrator:

• Automatic binpacking
Automatically places containers depending resources

requirements
• Self-healing 

Kill and restarts failed containers
• Horizontal scaling

Scale application based on CPU usage
• Service discovery

Automatically detects devices and services on the fly
• Load balancing

Distributes work among replicas

16



Functionalities

• Automated rollouts and rollbacks
Automatically undoes failed configuration changes

• Secret and configuration management
Avoids exposing secrets in stack configuration

• Storage orchestration
Abstracts storage (Cloud, Local, Network, ...)

• Batch execution
Manages batch and CI workloads

17



Summary

Docker Swarm For really small clusters.
Compose well with other Docker tools

Apache Mesos For complex or custom requirements
Kubernetes Default option. Considered as industry standard

18



Kubernetes example



Kubernetes example

Configuration file to:

• Deploy a Redis master store
• Expose a service

19



Kubernetes example: Service

apiVersion: v1 # version of kubernetes API
kind: Service # type of object to define (Service, Pod, ...)
metadata: # name, label or other

name: redis-master
labels:

app: redis
tier: backend
role: master

spec: # define the behavior of a service
ports:
- port: 6379 # ports exposed by this service

targetPort: 6379
selector: # Map a pod with these tags

app: redis
tier: backend
role: master 20



Kubernetes example: Deployment

apiVersion: v1
kind: Deployment # pods constructor handler
metadata:

name: redis-master
spec: # specification of deployment's behavior

selector: # select target service's labels
matchLabels:

app: redis
role: master
tier: backend

replicas: 1 # number of pods to create
template: # define the pod(s)

...

21



Kubernetes example: Deployment

metadata:
labels:

app: redis
role: master
tier: backend

spec:
containers:
- name: master

image: k8s.gcr.io/redis:e2e # container's image
resources: # define container's resources

requests:
cpu: 100m
memory: 100Mi

ports: # port to expose container
- containerPort: 6379

22



Service utilization

package main

import "github.com/xyproto/simpleredis"

func main() {
masterPool := simpleredis

.NewConnectionPoolHost("redis-master:6379")
defer masterPool.Close()

// Use the redis db.
}

23


	Orchestration introduction
	Orchestration solutions
	Kubernetes example

