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Deployement: The old school way
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Deployement: The old school way

1. Manual
2. Scripting
3. Infrastructure automation
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IT trends

Micro-services introduces complexity in deployement
Infrastructure as Code (IaC) provides a new paradigm to

manage servers
Containers simplify applications packaging
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What’s an orchestrator?

• Facilitates complex containers deployement
• Abstracts services mapping on servers
• Container’s management (monitoring, restarting, killing, …)
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Why orchestrating?

• Host provisioning
• Containers instantiation
• Failed containers rescheduling
• Containers external interfaces configuration
• Scaling
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Orchestration solutions



Existing solutions

• Docker Swarm
• Kurbenetes
• Others

Points of comparaison:

• Added value
• Inconvenient
• Use-cases
• Components
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Docker Swarm

• Docker’s orchestrator
• Simple to configure
• Well integrated with other Docker solutions
• Use-cases

Small deployments or experiments
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Docker Swarm: Components

9



Docker Swarm: Components

Manager nodes distributes tasks across the cluster
Worker nodes run Docker images
Key-value store keeps configurations and some states distributed

across the cluster
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Kubernetes

• Google open source solution based on Borg
• Highly modulable (network stack, container runtime, …)
• High learning curve
• Use-cases

Microservices, medium to large clusters
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Kubernetes: Components
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Kubernetes: Master’s components

API server exposes a front-end to control the Kubernetes cluster
Controllers evaluate and propagate changes
Scheduler dispatchs pods on nodes based on the policy in place

Key-value store (etcd) keeps configurations and some states
distributed across the cluster
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Kubernetes: Nodes’ components

Kubelet controls groups of containers one node
Proxy is a network abstraction
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Related work

• Apache Mesos is a distributed systems kernel
• Apache Marathon is an orchestrator built on Apache Mesos
• Nomad is another orchestrator built for simplicity
• OpenShift is built on top of Kubernetes to provide a

self-hosted PaaS container platform
• OpenStack is an abstraction of machines providing a

self-hosted IaaS
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Functionalities

Usual features of an orchestrator:

• Automatic binpacking
Automatically places containers depending resources

requirements
• Self-healing 

Kill and restarts failed containers
• Horizontal scaling

Scale application based on CPU usage
• Service discovery

Automatically detects devices and services on the fly
• Load balancing

Distributes work among replicas
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Functionalities

• Automated rollouts and rollbacks
Automatically undoes failed configuration changes

• Secret and configuration management
Avoids exposing secrets in stack configuration

• Storage orchestration
Abstracts storage (Cloud, Local, Network, ...)

• Batch execution
Manages batch and CI workloads
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Summary

Docker Swarm For really small clusters.
Compose well with other Docker tools

Apache Mesos For complex or custom requirements
Kubernetes Default option. Considered as industry standard
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Kubernetes example



Kubernetes example

Configuration file to:

• Deploy a Redis master store
• Expose a service
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Kubernetes example: Service

apiVersion: v1 # version of kubernetes API
kind: Service # type of object to define (Service, Pod, ...)
metadata: # name, label or other

name: redis-master
labels:

app: redis
tier: backend
role: master

spec: # define the behavior of a service
ports:
- port: 6379 # ports exposed by this service

targetPort: 6379
selector: # Map a pod with these tags

app: redis
tier: backend
role: master 20



Kubernetes example: Deployment

apiVersion: v1
kind: Deployment # pods constructor handler
metadata:

name: redis-master
spec: # specification of deployment's behavior

selector: # select target service's labels
matchLabels:

app: redis
role: master
tier: backend

replicas: 1 # number of pods to create
template: # define the pod(s)

...
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Kubernetes example: Deployment

metadata:
labels:

app: redis
role: master
tier: backend

spec:
containers:
- name: master

image: k8s.gcr.io/redis:e2e # container's image
resources: # define container's resources

requests:
cpu: 100m
memory: 100Mi

ports: # port to expose container
- containerPort: 6379
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Service utilization

package main

import "github.com/xyproto/simpleredis"

func main() {
masterPool := simpleredis

.NewConnectionPoolHost("redis-master:6379")
defer masterPool.Close()

// Use the redis db.
}
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