
I404B NoSQL

Session 3

Column-Oriented Model:
Cassandra, HBase

Sébastien Combéfis Fall 2019

This work is licensed under a Creative Commons Attribution – NonCommercial –
NoDerivatives 4.0 International License.

Objectives

Column-Oriented model

Storing rows or columns on disk

The data model

Main types of queries

Examples of column-oriented databases

HBase

Cassandra

3

Column-Oriented Model

Column Family (1)

Column-oriented databases close to relational ones

Include columns with a given data type

Follow the BigTable approach brought by Google

Whose HBase is an open source implementation

Quick access to data and very good scalability

In particular with Cassandra and a peer-to-peer distribution

5

Column Family (2)

Set of row keys and column families

Organisation of a database with several tables

Grouping together data often accessed together

Each column family is a data map

6

Row vs. Column (1)

Disk storage by tuples or by rows

Initially only a storage issue

Queries do not often include all columns

Direct column retrieval from the disk more efficient

Stockage de lignes

ID Firstname Class

16067

15056

Théo

Houda

4MIN

5MIN

Stockage de colonnes

ID Firstname Class

16067

15056

Théo

Houda

4MIN

5MIN

7

Row vs. Column (2)

Choosing the disk storage to have efficient operations

Row storage efficient for writes

Row storage efficient for reads

Reading of a few columns with many rows

Improve the performances of select queries

Row storage Column storage

+ Easy to add a record Only the desired data is read
− Reading unnecessary data Writing a tuple requires multiple access

8

C-Store (1)

Storing the data in columns in the database

Created by Brown, Brandeis, MIT and UMass Boston universities

Based on the relational model and uses SQL

Does not belong to the NoSQL world, but will inspire it

Two different storage spaces on the disk

To better optimise the read and write operations

9

C-Store (2)

ROS (Read Optimized Store)

Storing files containing columns

Compressing files depending on the included data types

Data sorted by an attribute of the table of the column

WOS (Write Optimized Store)

Temporary buffer used for write (INSERT, UPDATE)

No compression and vertical partitioning

10

C-Store (3)

Regular migration of data from the WOS to the ROS

Realised by a tuple mover authorised to write in the ROS

Queries must be able to operate on both stores

Insertions directly sent to the WOS

Deletions marked in the ROS, then managed by tuple mover

Update is a combination of insertions and deletions

WOS ROS
tuple mover

11

Row vs. Column (3)

No absolute best choice between rows and columns

It depends on the kind of performed operations

Rows Columns

Aggregating elements from a column Slow Fast
Compression – High
Selecting a few columns Slow (skipping data) Fast
Insertion/Update Fast Slow
Selecting a record Fast Slow

12

Data Model (1)

A column-oriented base is a two-level map

Rather than a table structure organised by columns

A key-value pair identifies a row at the first level

The key is a row identifier

A map of columns forming families at the second level

Arbitrary number of key-value pairs by row

Families for common accesses to columns

13

Data Model (2)

Two-level structure combining rows and columns

Row is the join of records from column families

16107

FirstName

Class

Age

Smits

4MIN

22

NoSQL

Robot. Proj.

Web Dev.

Finance

{’grade’: 18, ’credits’: 5}

{’grade’: 0, ’teacher’: ’MAR’}

{’teacher’: ’DKP’, ’credits’: 5}

{}

Row key

Column key

Column family

14

Data Model (3)

Column-oriented databases are not really tables

Columns can be added to any row

Rows can have different column keys

Defining new column families is rare

But adding new column can be done on the fly

Two kinds of rows depending on the number of columns

Skinny row few columns and same everywhere (field-like)

Wide row thousands of columns (list-like)

15

Table vs. Column

Column-oriented databases avoid presence of NULL

Each row only has the columns it should have

Matricule NoSQL Robot. Proj. Web Dev. Python Finance
16107 18 0 – NULL –
15154 NULL NULL 10 19 –

16107

NoSQL

Robot. Proj.

Web Dev.

Finance

15

18

–

–

15154

Web Dev.

Python

Finance

10

19

–

16

Column Advantage

Efficient read of data only from the necessary columns

Watch out for tuple reconstruction when reading all

Better compression rate, but higher CPU usage

Less entropy since all data from the same domain

Efficiency of data sorting and indexing

With redundant storage thanks to space gained by compression

17

Projection (1)

Possibility to have physically stored projections

To improve performances for some query types

Logical table
Region Customer Product Sale
A G C 789
B C C 743
D F D 675
C C A 23
A R B 654

Super-projection
Region A B D C A
Customer G C F C R
Product C C D A B
Sale 789 743 675 23 654

18

Projection (2)

Projections can be sorted on one or several columns

Improve performance for SORT and GROUP BY requests

Logical table
Region Customer Product Sale
A G C 789
B C C 743
D F D 675
C C A 23
A R B 654

Projection 1
Region A A B C D
Product B C C A D
Sale 654 789 743 23 675

Ease query such as:
SELECT Region, Product, SUM(Sale)

GROUP BY Region, Product

19

Projection (3)

Can be created manually or on the fly

A bit the same logic than having materialised views

Logical table
Region Customer Product Sale
A G C 789
B C C 743
D F D 675
C C A 23
A R B 654

Projection 2
Customer C C F G R
Sale 743 23 675 789 654

Ease query such as:
SELECT Customer, SUM(Sale)

GROUP BY Customer

20

Compression (1)

Run-Length Encoding on values in the columns

Convenient when a lot of similar data

Semester
Q1
Q1
Q1
Q1
Q1
Q1
...
Q2
Q2
Q2
...

Product
1
1
1
1
2
2
...
1
1
2
...

Price
5
7
2
9
6
8
...
3
8
1
...

Semester
(Q1, 1, 300)
(Q2, 301, 350)

...

Product
(1, 1, 4)
(2, 5, 2)

...
(1, 301, 2)
(2, 303, 1)

...

Price
5
7
2
9
6
8
...
3
8
1
...

21

Compression (2)

Bit-Vector Encoding for each unique value of columns

Convenient when only few unique values, combined with RLE

Product
1
1
1
1
2
2
...
1
1
2
...

Product : 1
1
1
1
1
0
0
...
1
1
0
...

Product : 2
0
0
0
0
1
1
...
0
0
1
...

...

22

Compression (3)

Dictionary for each value or block of values

Convenient when pattern repetitions

Semester
Q1
Q2
Q4
Q1
Q3
Q1
Q1
Q1
Q2
...

Semester
0
1
3
0
2
0
0
0
1
...

Dictionary

0 : Q1
1 : Q2
2 : Q3
3 : Q4

+ OR

Semester
24
128
122

Dictionary

24 : Q1, Q2, Q4
122 : Q1, Q1, Q3
128 : Q1, Q3, Q1

+

23

Use Case

Storing events logs

State changes or errors found in an application

Blog posts as part of a CMS

Tags, categories, links, etc. in different columns of a family

Count and categorise visitors of a webpage

Using a particular counter type column

24

Non-Use Case

Problems for which ACID must be satisfied for read/write

No ACID transactions with column-oriented databases

Data aggregation requests (SUM, AVG, etc.)

First requires to get all the rows on the client side

Do not use when in a prototyping phase

The design of column families change with requests to perform

25

HBase

HBase

Open source implementation of the BigTable engine by Google

Is part of the Hadoop project by Apache

Executed on top of the HDFS file system

Storage of sparse data while being fault-tolerant

A DB can serve as input/output of MapReduce (Hadoop)

Possible to have a SQL layer thanks to Apache Phoenix

27

Data Model

Set of versioned column families

Columns of a given family stored together in a HFile

ColumnColumnColumn
ColumnColumnColumn

Family

ColumnColumnColumn
ColumnColumnColumn

Family

Key

Table

HFile

HFile

Path to find a value: Table → Key → Family → Column → Timestamp
28

Architecture (1)

Based on Hadoop and HDFS to distribute the storage

Combination of sharding and replication

Sharding realised by region servers

Split in several regions when a table becomes too big

Replication ensured automatically by HDFS

File split in blocks replicated with a given factor

29

Architecture (2)

Written data are going through several steps

First handled in a WAL (Write-Ahead Log)

Data places in a buffer named memstore

Memstore writes in a HFile on the HDFS when too big

Sorted set of key-values serialised on disk and immutable

Deletion managed thank to a tombstone marker

Effective deletion at the same time than compaction

30

Installing HBase

HBase is a program written in Java

Several programs proposed after installation

start-hbase is a script that starts an HBase server

stop-hbase is a script that stops an HBase server

hbase is used to launch several management commands

hbase shell proposes a command line interface client
hbase thrift starts the Thrift gateway

31

Starting the Server

Starting the server and verifying the connection

Using status to check that everything is good

& start - hbase .sh

& hbase shell
HBase Shell ; enter ’help <RETURN >’ for list of supported commands .
Type "exit <RETURN >" to leave the HBase Shell
Version 1.2.2 , r3f671c1ead70d249ea4598f1bbcc5151322b3a13 , Fri Jul

1 08:28:55 CDT 2016

hbase (main):001:0 > status
1 active master , 0 backup masters , 1 servers , 0 dead , 2.0000
average load

32

Creating a Table

Creating a new table with the create command

Specifying column families with the number of versions

hbase (main):002:0 > create ’students ’, {NAME => ’infos ’, VERSIONS
=> 1}, {NAME => ’registrations ’, VERSIONS => 2}
0 row(s) in 1.2230 seconds

=> Hbase :: Table - students

hbase (main):003:0 > list
TABLE
students
1 row(s) in 0.0630 seconds

=> [" students "]

33

Adding a Row

Adding values to different columns with put

Specifying each time the column family

hbase (main):004:0 > put ’students ’, ’16107 ’ , ’infos :firstname ’, ’
Smits ’
0 row(s) in 0.1350 seconds

hbase (main):005:0 > put ’students ’, ’16107 ’ , ’infos :age ’, ’22’
0 row(s) in 0.0120 seconds

hbase (main):006:0 > put ’students ’, ’16107 ’ , ’registrations :class
’, ’4MIN ’
0 row(s) in 0.0110 seconds

hbase (main):007:0 > get ’students ’, ’16107 ’
COLUMN CELL

infos :age timestamp =1477172359150 , value =22
infos : firstname timestamp =1477172339414 , value = Smits
registrations : class timestamp =1477172463762 , value =4 MIN

3 row(s) in 0.0750 seconds

34

New Version of a Column

Possible to retrieve the different versions of a column

Using parameters of the get command

hbase (main):008:0 > put ’students ’, ’16107 ’ , ’registrations :note ’,
’Loves electronics ’

0 row(s) in 0.0030 seconds

hbase (main):009:0 > put ’students ’, ’16107 ’ , ’registrations :note ’,
’Loves informatics ’

0 row(s) in 0.0030 seconds

hbase (main):010:0 > get ’students ’, ’16107 ’ , { COLUMN => ’
registrations :note ’, VERSIONS => 2}
COLUMN CELL

registrations :note timestamp =1477173105470 , value = Loves
informatics
registrations :note timestamp =1477173102196 , value = Loves
electronics

2 row(s) in 0.0110 seconds

35

happybase Python module

happybase Python module to query the database

Thrift gateway to start with hbase thrift start

1 import happybase
2
3 connection = happybase . Connection (’localhost ’)
4 print (connection . tables ())
5
6 table = connection . table (’students ’)
7 print (table)

[b’students ’]
<happybase . table . Table name=b’students ’>

36

Inserting a Column

Columns insertion with the put method of the table

The different columns are provided by a dictionary

Row columns retrieval with the row method

1 table .put(’15154 ’, {
2 ’infos : firstname ’: ’Mathias ’,
3 ’infos :sex ’: ’M’,
4 ’registrations : class ’: ’4MIN ’
5 })
6 print (table .row(’15154 ’))

{b’ infos :sex ’: b’M’, b’ infos :firstname ’: b’Mathias ’, b’
registrations :class ’: b ’4MIN ’}

37

Retrieving Columns

Retrieving a row with row and several with rows

Possible to filter the columns to only keep the desired ones

1 users = [b’16107 ’, b’15154 ’]
2 classes = {}
3 rows = table .rows(users , columns =[b’infos : firstname ’, b’

registrations : class ’])
4 for key , value in rows:
5 students = classes . setdefault (value [b’registrations : class ’],

set ())
6 students .add(value [b’infos : firstname ’])
7 print (classes)

{b ’4MIN ’: {b’Mathias ’}, b ’4MIN ’: {b’Smits ’}}

38

Cassandra

Cassandra

Originally developed by Facebook and open sourced in 2008

Is not part of Apache’s lap

Fast and scalable database, peer-to-peer replication on cluster

Commodity servers, no single point of failure

Query language Cassandra Query Language (CQL)

Variant of SQL to query Cassandra keyspaces

40

Data Model

Column families set with rows

Rows can contain different columns of the family

Row 1 key Column 1
name1:value1

Column 2
name2:value2

Column N
nameN:valueN

Row

Row 2 key Column 1
name1:value1

Column 4
name4:value4

Column N
nameN:valueN

Row

Column family

41

Column

A column is a key-value pair with a timestamp

The name of the column also plays the role of a key

The timestamp defines the lifetime of the column

And write conflict resolution, stale data, etc.

1 {
2 name: " FirstName ",
3 value : " Smits ",
4 timestamp : 1234567890
5 }

1 {
2 name: " Class ",
3 value : "4MIN",
4 timestamp : 1234567890
5 }

42

Standard Column Family

A row is a collection of columns

A key is attached to this collection of columns

A column family is a collection of similar rows

Columns are simple, just a name and a value

1 {
2 smits : { # row with 3 columns , key " smits "
3 FirstName : " Smits ",
4 Class : "4MIN",
5 Age: 22
6 },
7 mathias : { # row with 3 columns , key " mathias "
8 FirstName : " Mathias ",
9 Class : "4MIN",

10 Sex: "M"
11 }
12 }

43

Supercolumn

The value of a supercolumn is a map

“Several columns” as the value of a column

A supercolumn is a container of columns

Each contained column has a timestamp

1 {
2 name: " O4020 ",
3 value : {
4 name: "Data acquisition and treatment ",
5 coordinator : "MCH",
6 credits : 4
7 },
8 timestamp : 1234567890
9 }

44

Supercolumn Family

A supercolumn family gathers supercolumns

Watch out that Cassandra retrieves all, not always optimal

1 {
2 3BE: {
3 E3050 : {
4 name: "Signals , systems and telecommunications ",
5 coordinator : "DBR",
6 credits : 6
7 },
8 E3010 : {
9 name: " Microcontroller and Logic Design ",

10 coordinator : "FLE",
11 credits : 6
12 }
13 },
14 4MIN: {
15 O4020 : {
16 name: "Data acquisition and treatment ",
17 credits : 4
18 }
19 }
20 }

45

Keyspace

Cassandra organises the column families into keyspaces

Acts like a namespace for column families

Similar to the notion of base of relational engines

Gathering families linked to a same application

46

Installing Cassandre

Cassandra is a program written in Java

Several programs proposed after installation

cassandra starts a Cassandra server

cqlsh is a client command line interface

nodetool gives information about Cassandra server

47

Starting the Server

Starting the server and checking the connection

Immediate indication of whether a server has been found

& cassandra

& cqlsh
Connected to Test Cluster at localhost :9042.
[cqlsh 5.0.1 | Cassandra 3.7 | CQL spec 3.4.2 | Native protocol
v4]
Use HELP for help.
cqlsh >

48

Executing a Query

Obtaining information on the cluster with a CQL query

Information retrieved from the system.local table

Great similarity with SQL queries

cqlsh > SELECT cluster_name , listen_address FROM system . local ;

cluster_name | listen_address
--------------+----------------

Test Cluster | 127.0.0.1

(1 rows)

49

Information on the Base

Obtaining information with the DESCRIBE command

Description of cluster, keyspaces, tables, etc.

cqlsh > DESCRIBE CLUSTER ;

Cluster : Test Cluster
Partitioner : Murmur3Partitioner

cqlsh > DESCRIBE KEYSPACES ;

system_traces system_schema system_auth system
system_distributed

cqlsh > DESCRIBE TABLES ;

Keyspace system_traces

events sessions
[...]

50

Creating a Keyspace

Creating a new keyspace with CREATE KEYSPACE

Configuring the keyspace properties, for example replication

Example with simple replication with a given factor

cqlsh > CREATE KEYSPACE myschool
... WITH replication ={’class ’: ’SimpleStrategy ’, ’
replication_factor ’: 3};

cqlsh > DESCRIBE keyspaces ;

myschool system_schema system_auth system system_distributed
system_traces

cqlsh > USE myschool ;
cqlsh :myschool >

51

Creating a Table

Creating a new table with CREATE TABLE

Definition of the different columns of the table

Primary key to uniquely identify rows

cqlsh :myschool > CREATE TABLE students (
... serial int PRIMARY KEY ,
... firstName text ,
... class text ,
... age int ,
... sesque text
...);

cqlsh :myschool > SELECT * FROM students ;

serial | age | class | firstName | sesque
--------+-----+-------+-----------+--------

(0 rows)

52

Adding and Removing Column

The table structure can be changed with ALTER TABLE

Possibility to add and remove columns

Example of a correction of the column sesque in sex

cqlsh :myschool > ALTER TABLE students DROP sesque ;

cqlsh :myschool > ALTER TABLE students ADD sex text;

cqlsh :myschool > SELECT * FROM students ;

serial | age | class | firstName | sex
--------+-----+-------+-----------+-----

(0 rows)

53

Adding Row

Adding a row in the table with INSERT INTO

Specifying the columns for which there is a value to set

Example of adding Smits in the students table

cqlsh :myschool > INSERT INTO students (serial , firstName , class ,
age)

... VALUES (16107 , ’Smits ’, ’4MIN ’, 22);
cqlsh :myschool > SELECT * FROM students ;

serial | age | class | firstName | sex
--------+-----+-------+-----------+------

16107 | 22 | 4MIN | Smits | null

(1 rows)

54

Other CRUD Operations

Three other CRUD operations as with SQL

Update rows
UPDATE table SET n1=v1, n2=v2... WHERE cond

Read rows
SELECT c1, c2... FROM table WHERE cond

Delete rows
DELETE c1, c2... FROM table WHERE cond

Operation on a single row with a condition on its key

Not specifying c1, c2... acts on a whole column

55

cassandra Python Module

cassandra Python Module to query the database

Creation of a cluster and connection on a keyspace

1 from cassandra . cluster import Cluster
2
3 cluster = Cluster ([’127.0.0.1 ’])
4 session = cluster . connect (’myschool ’)
5
6 print (cluster)
7 print (session)

<cassandra . cluster . Cluster object at 0 x1096af240 >
<cassandra . cluster . Session object at 0 x10a6bed30 >

56

Executing a Query

Using the execute method on the session

Executing a CQL query, retrieving a named tupled

The class column will not be accessible as a field

Because of a conflict with the class property of Python

1 rows = session . execute (’SELECT * FROM students ’)
2 for row in rows:
3 print (row)
4 print (’=> {} ({} y.o.) ’. format (row.firstName , row.age))

Row(serial =16107 , age =22 , field_2_ =’4MIN ’, firstName =’Smits ’, sex
=None)
=> Smits (22 y.o.)

57

Building a Query

Query by inserting values in a string

Similar to formatted outputs

1 session . execute (
2 ’’’
3 INSERT INTO students (serial , firstName , class , sex)
4 VALUES (%s, %s, %s, %s)
5 ’’’,
6 (15154 , ’Mathias ’, ’4MIN ’, ’M’)
7)
8
9 rows = session . execute (’SELECT * FROM students ’)

10 for row in rows:
11 print (row)

Row(serial =15154 , age=None , field_2_ =’4MIN ’, firstName =’Mathias ’,
sex=’M ’)

Row(serial =16107 , age =22 , field_2_ =’4MIN ’, firstName =’Smits ’, sex
=None)

58

Prepared Query

Building a prepared query with the prepare method

Then execution with the execute method

Authorise search on a column with ALLOW FILTERING

1 search_class = session . prepare (’SELECT class FROM students WHERE
firstName =? ALLOW FILTERING ’)

2
3 users = [’Harold ’, ’Smits ’, ’Théo ’, ’Mathias ’]
4 classes = {}
5 for user in users :
6 rows = session . execute (search_class , [user])
7 for row in rows:
8 students = classes . setdefault (row [0] , set ())
9 students .add(user)

10 print (classes)

{’4MIN ’: {’Smits ’, ’Mathias ’}}

59

References

Mangat Rai Modi, Rowise vs Columnar Database? Theory and in Practice, January 26, 2018.
https://medium.com/@mangatmodi/rowise-vs-columnar-database-theory-and-in-practice-53f54c8f6505
Ameya, C-Store: A Columnar Database: Introduction, April 5, 2019.
https://medium.com/@ameya_s/c-store-a-columnar-database-1fe7e84d7247

60

https://medium.com/@mangatmodi/rowise-vs-columnar-database-theory-and-in-practice-53f54c8f6505
https://medium.com/@ameya_s/c-store-a-columnar-database-1fe7e84d7247

Credits

Logo pictures from Wikipedia.
zolakoma, August 8, 2008, https://www.flickr.com/photos/zolakoma/2847597889.
balu, May 15, 2014, https://www.flickr.com/photos/balusss/14004726607.
Simon Winch, August 23, 2010, https://www.flickr.com/photos/110777427@N06/14184365994.

61

https://www.flickr.com/photos/zolakoma/2847597889
https://www.flickr.com/photos/balusss/14004726607
https://www.flickr.com/photos/110777427@N06/14184365994

