
I404B NoSQL

Session 2

Key-Value Model:
Riak, Memcached, Redis

Sébastien Combéfis Fall 2019

This work is licensed under a Creative Commons Attribution – NonCommercial –
NoDerivatives 4.0 International License.

Objectives

The key-value model

Principle and characteristics of key-value storage

Use case and non-use cases

Data repartition models

Examples of key-value databases

Riak

Memcached

Redis

3

Key-Value Model

Key-Value (1)

Key-value databases similar to hashtables

Stores key-value pairs, identifiable by their key

Similar to a relational table with two columns

Used when searching on primary key

Very good performance thanks to indexing on the key

Id Name
16133 Yannis
16067 Théo
16050 Yassine
15089 Maxime

5

Key-Value (2)

The simplest NoSQL storage space

Regarding the API to use it

Mainly three operations on the store

Retrieve/set a value for a key, delete a key

6

Data Type

The stored value is a blob type (Binary Large OBject)

It is up to the application to manage the values and their format

Sometimes limits on the size of stored values

For performance reasons

Sometimes domain constraints on aggregates

Redis supports lists, sets and hashes

7

Basic API

Three basic operations supported by all engines

get(k) retrieves the v value associated to the k key

put(k, v) adds the (k, v) pair in the store

delete(k) deletes the pair associated to the k key

The engine can propose specific operations

Redis proposes the union of sets, for example

8

Use Case

Storing session information for a website

Unique identifier convenient for a key-value database

Profiles and preferences of a given user

User is characterised by a unique username

Shopping carts on an e-commerce website

Storing the current shopping cart of a user

9

Non-Use Case

Links to establish between data related to different keys

Following the links between data is not easy

Backup of several keys and failure of some backups

Not possible to restore operations already realised

Not possible to make requests on the values

Except for some specific engines

10

Distribution Model

Distribution Model

Several possible models to operate a cluster

End of scale up (larger server) for scale out (more servers)

The aggregate information unit can be easily distributed

Fine granulometry of information

Several reasons to use a cluster

Ability to manage larger amounts of data

Provide a larger read/write traffic

Resist to network slowdowns or failures

12

Unique Server

No distribution in the simplest version

Execution on a single machine that manages reads/writes

Solution very simple to implement and operate

Easy to manage for operators

Easy to reason for application developers

Suitable for graph-oriented databases

Where operations to perform are often aggregations

13

Sharding (1)

Store should be busy with several users

When they are accessing different parts of the data

Sharding places data on several servers

Horizontal scalability with with deployment of several nodes

Load balancing between the different servers

If the users are requesting different data

14

Sharding (2)

...
Harold
Victor
Yannis

Bastien
Mathias

read/write read/write

15

Load Balancing

Ideally, the load is well distributed between clients

With 5 nodes, each node manages 20% of the load

Data accessed together must be place on the same node

Using aggregate as the distribution unit

Using the geographical location of data

Collecting aggregates by common access probability

Possibility to have automatic sharding

The engine manages the sharding and data rebalancing

16

Master-Slave Replication (1)

Data replicated on several nodes

Suitable when more reads than writes

Two kinds of nodes in the system

A master node responsible for data and update

Several slave nodes that are replicates of the master

Two properties for this kind of replication

Read resilience allows reads if the master fails

Values read by users may differ by inconsistency

17

Master-Slave Replication (2)

Master

Slaves ...
Bastien
Harold
Mathias
Victor
Yannis

Bastien
Harold
Mathias
Victor
Yannis

Bastien
Harold
Mathias
Victor
Yannis

synch synch

read/write

read read

18

Data Scattering

Routing requests based on the type

Read sent to the slaves and writes to the master

Slaves synchronisation by replication process

Modifications on the master are communicated to the slaves

Election of a slave as the master if it fails

Two modes of choice of the master

Manual choice by configuration

Automatic choice by dynamic election

19

Peer-to-Peer Replication (1)

Data replicated on several nodes that are all equal

Brings scalability for write operations

Synchronising all the nodes at each write

Concurrent and permanent write conflicts, not like with read

Several properties for this kind of replication

Complete read and write resilience

Values read by different users different by inconsistency

20

Peer-to-Peer Replication (2)

...
Bastien
Harold
Mathias
Victor
Yannis

Bastien
Harold
Mathias
Victor
Yannis

Bastien
Harold
Mathias
Victor
Yannis

synch synch

synch

read/write

read/write read/write

21

Sharding vs. Replication

Sharding distributes the load, no resilience

Different data on different nodes

Replication offers resilience, heavy synchronisation

Same data places on different nodes

Strategy Scaling Resilience Inconsistency

Sharding Write – –

M/S Replication Read Read Yes

P2P Replication Read/Write Read/Write Yes

22

Combining Sharding and Replication

Master-slave replication and sharding

Possibility to have several masters, but only one by data

Node with a single role or mixed roles

Peer-to-peer replications and sharding

Data sharded on hundreds of nodes

Data is replicated on N nodes (replication factor)

23

Riak

Riak

Created and developed by the Basho company

Company founded in 2008 and develops Riak and other solutions

Active company and last version in may 2019

Riak is developed in Erlang and the last version is Riak 2.9.0

Decentralised NoSQL engine based on Amazon Dynamo

Scales by adding new machines to the cluster

25

Bucket

Riak can store keys in buckets

Acts as a namespace for keys

Several possibilities to operate buckets

Composed values or separation as “specific objects”

<Bucket = userData>

<Key = sessionID>

<Value = Object>

– UserProfile

– SessionData

– ShoppingCart
– CartItem
– CartItem

versus

<Bucket = userData>

<Key = sessionID_userProfile>

<Value = UserProfileObject>

<Key = sessionID_sessionData>

<Value = SessionDataObject>

26

Domain Bucket

Domain bucket can store a precise type of data

Automatic serialisation/deserialisation by the client

Separation in buckets to segment data

Possible to only read objects that you want to read

Possible to use the same key through different buckets

Fight against impedance mismatch

Store directly contains application objects

27

Installing Riak

Riak is a program written in Erlang

Several programs proposed after installation

riak to control Riak nodes

riak-admin for administration operations

28

Starting a Node

Starting a Riak node with the riak executable

Starting with the start option and stopping with the stop option

& riak start

& riak ping
pong

29

riak Python Module

riak Python module to query the store

Opening a connection and then methods to make queries

1 import riak
2
3 client = riak. RiakClient (protocol =’http ’, http_port =8098)
4
5 print (client .ping ())
6 print (client . get_buckets ())

True
[]

30

Creating a Bucket

Creating a new bucket with the bucket method

To be called on the Riak client

Return a RiakBucket object

Used to add and read key-value pairs

1 import riak
2
3 client = riak. RiakClient (protocol =’http ’, http_port =8098)
4
5 bucket = client . bucket (’students ’)
6 print (bucket)

<RiakBucket ’students ’>

31

Data Manipulation

Creating a new data with the new method

Return a RiakObject object that can be stored

1 import riak
2
3 client = riak. RiakClient (protocol =’http ’, http_port =8098)
4 bucket = client . bucket (’students ’)
5
6 print (bucket .get(’16050 ’).data)
7
8 yassine = bucket .new(’16050 ’, ’Yassine ’)
9 yassine . store ()

10 print (bucket .get(’16050 ’).data)

None
Yassine

32

Riak Cluster

Distributing data with a consistent hash

Minimises keys remapping when the number of nodes changes

Distributed the data well and minimises hotspots

Using SHA-1 and the 160 bits spaces as ring

Cutting the ring in partitions called “virtual nodes”

Each physical node hosts several vnodes

33

Memcached

Memcached

General purpose distributed cache system

Speed up a website by caching objects in RAM

Used in combination with another database

For example from PHP as a cache to a MySQL database

Memcached is a program written in C

35

Architecture (1)

Built on a client/server architecture

Server services exposed on the 11211 port by default

The client makes queries by key on the store

Keys are at most 250 bytes and values are up to 1 Mio

A client knows all the servers

Servers do not communicate between them

Computation of a hash on the key to chose the server

36

Architecture (2)

Store data are stored in RAM

Oldest values deleted if not enough RAM

Memcached to be used as a transient cache

Act as a big hashtable

Key-value pairs are stored in this hashtable

37

memcache Python Module

memcache Python module to query the store

Opening a connection and methods for commands

1 import memcache
2
3 mc = memcache . Client ([’127.0.0.1:11211 ’])
4
5 print (mc.get(’16133 ’))
6 print (mc.set(’16133 ’, ’Yannis ’))
7 print (mc.get(’16133 ’))
8 print (mc. delete (’16133 ’))
9 print (mc.get(’16133 ’))

None
True
Yannis
1
None

38

The Trivago Example

Trivago uses Memcached for its cache layer

Avoid a lot of direct requests to the main database

Big sudden issue with logs filled with Memcached errors

Failures of get and overload of the database

Botnet from more than 200 countries with 70K unique IPs...

Memcached network interface saturation beyond 1 Gbit/s

39

The Facebook Example (1)

Facebook uses Memcached for a distributed store

Distributed storage of key-value pairs in memory

Two different usages for request or generic

Used as a demand-filled look-aside cache

And also deployment of a generic distributed store

40

The Facebook Example (2)

No coordination server-server with Memcached

“Only” a local in-memory hashtable of a server

Replication inside a server cluster

Data flow from the master to the slaves

41

Redis

Redis

Database engine in memory

Manipulate data structure as quickly as possible

Also plays the role of a data cache

Similar to Memcached with a richer and stronger model

Restriction on the manipulated values

Five possible kinds of values stored in the database

43

Value Type

Possible to manipulate specific data types with Redis

And do not manipulate documents like other databases

Five different types of data

Strings, and numeric or binary value

Lists of strings (insertion order maintained)

Set of strings, unsorted and without duplicate

Hash (dictionary), not hierarchical

Sorted set with association of a note for each element

44

Installing Redis

Redis is a program written in C

Several programs proposed after installation

redis-server to start a Redis server

redis-cli is a command-line client

redis-benchmark makes a performance test

45

Starting the Server

Starting the server and testing the connection

Test of a ping to the server from the command line

& redis - server

& redis -cli
127.0.0.1:6379 > ping
PONG

46

Manipulating String

Several basic commands to manipulate strings

SET adds a new string in the store

GET retrieves the value associated to a key

DEL deletes a key from the store

& redis -cli
127.0.0.1:6379 > GET 15089
(nil)
127.0.0.1:6379 > SET 15089 " Maxime "
OK
127.0.0.1:6379 > GET 15089
" Maxime "
127.0.0.1:6379 > DEL 15089
(integer) 1
127.0.0.1:6379 > GET 15089
(nil)

47

redis Python Module

redis Python module to query the store

Opening a connection then methods for commands

1 import redis
2
3 r = redis . StrictRedis (host=’localhost ’, port =6379 , db =0)
4
5 print (r.get(’15089 ’))
6 print (r.set(’15089 ’, ’Maxime ’))
7 print (r.get(’15089 ’))
8 print (r. delete (’15089 ’))
9 print (r.get(’15089 ’))

None
True
b’Maxime ’
1
None

48

Manipulating Hash

Several basic commands to manipulate hashes

HSET adds an entry in the hash table of a key

HVALS retrieves the complete hash table of a key

HGET retrieves the value of an entry of a hash table

HDEL deletes an entry of a hash table

& redis -cli
127.0.0.1:6379 > HSET 16067 firstName Théo
(integer) 1
127.0.0.1:6379 > HSET 16067 favColour green
(integer) 1
127.0.0.1:6379 > HVALS 16067
1) "Théo"
2) " green "
127.0.0.1:6379 > HGET 16067 favColour
" green "

49

Hash/Python Dictionary Equivalence

Direct mapping between hashes and Python dictionaries

Initialisation of a hash with hmset

1 import redis
2
3 r = redis . StrictRedis (host=’localhost ’, port =6379 , db =0)
4 r. hmset (’10003 ’, {
5 ’firstName ’: ’Théo ’,
6 ’favColour ’: ’green ’
7 })
8 print (r. dbsize ())
9 print (r. hgetall (’10003 ’))

1
{b’firstName ’: b’Théo ’, b’favColour ’: b’green ’}

50

Manipulating List

Several basic commands to manipulate lists

LPUSH adds an entry to the left of a list

LPOP removes the entry to the left of a list

RPUSH adds an entry to the right of a list

RPOP removes the entry to the right of a list

LRANGE extract a sublist from a list

& redis -cli
127.0.0.1:6379 > RPUSH students 16133
(integer) 1
127.0.0.1:6379 > RPUSH students 15089
(integer) 2
127.0.0.1:6379 > LRANGE students 0 -1
1) "16133"
2) "15089"

51

List/Python List Equivalence

Direct mapping between lists and Python lists

Initialisation of a list with rpush

1 import redis
2
3 data = [’16133 ’, ’15089 ’]
4
5 r = redis . StrictRedis (host=’localhost ’, port =6379 , db =0)
6 r. delete (’students ’)
7 r. rpush (’students ’, *data)
8
9 data = r. lrange (’students ’, 0, -1)

10 for elem in data:
11 print (elem)

b ’16133 ’
b ’15089 ’

52

Data Persistence

Redis is a in-memory only database

Once the server exits, all data is lost

Possibility to regularly save data on disk

Using the RDB system by default, for regular snapshots

Automatic reloading of the database

If a .rdb file is in the right folder

53

Expiration

Possible to choose the lifetime of elements

Using the EXPIRE command

An element in a cache should not live forever

54

Redis Social Network Example

Storing a simple social network with Redis

Defining the format of key-value pairs to use

Two kinds of objects in the store

User has a name and can be followed by others

Post is a message, a picture...

A user can have several posts

Storing the list of posts of a user

55

Key Format (1)

Defining the format of the keys to use

Must be a simple string

Convention to have unique keys

User

user:1:name → Mathias
username:Mathias → 1

Post

post:1:content → Hi Théo, you rock!
post:1:user → 1

56

Key Format (2)

Posts and follow relations with lists/sets

Integer numbers lists referring users and posts

Using “sub-keys” from user

Posts list

user:1:posts → [3, 2, 1]

Follow relation

user:1:follows → {2, 3, 4}
user:1:followed_by → {3}

57

Automatic Identifier

Possibility to increment a value with the INCR command

The value must represent an integer number

Adding two pairs to represent the next IDs

Keys next_user_id and next_post_id

1 import redis
2
3 r = redis . StrictRedis (host=’localhost ’, port =6379 , db =0)
4 r.set(’next_user_id ’, 0)
5 print (r.get(’next_user_id ’))
6
7 r.incr(’next_user_id ’)
8 print (r.get(’next_user_id ’))

b’0’
b’1’

58

Creating a New User

Definition of a method to create a new user

1 import redis
2
3 r = redis . StrictRedis (host=’localhost ’, port =6379 , db =0)
4 r.set(’next_user_id ’, 0)
5
6 def create_user (username):
7 uid = int(r.get(’next_user_id ’))
8 r.set(’user :{}: name ’. format (uid), username)
9 r.set(’username :{} ’. format (username), uid)

10 r.incr(’next_user_id ’)
11
12 create_user (’Mathias ’)
13 create_user (’Théo ’)
14
15 print (r.get(’user :0: name ’))
16 print (r.get(’user :1: name ’))

b’Mathias ’
b’Théo ’

59

Top 5 Redis Use Cases

Session cache and Full Page Cache (FPC)

The advantage of Redis is persistance

Implementation of an efficient message queue

For example with the Celery tool for Distributed Task Queue

Developing a leaderboard with counting

Execution of scripts with Pub/Sub events

60

References

Wishmitha S. Mendis, From RDBMS to Key-Value Store: Data Modeling Techniques, October 29, 2017.
https://medium.com/@wishmithasmendis/from-rdbms-to-key-value-store-data-modeling-techniques-a2874906bc46
Darren Perucci, DZone, Redis Replication vs Sharding, June 15, 2016.
https://dzone.com/articles/redis-replication-vs-sharding
Ivana Petrovic and Polina Pokalyukhina, How trivago Reduced Memcached Memory Usage by 50%, December 19,
2017. https://tech.trivago.com/2017/12/19/how-trivago-reduced-memcached-memory-usage-by-50
Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike
Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung and Venkateshwaran Venkataramani (2013). Scaling
Memcache at Facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2013). https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf
Joe Engel, Top 5 Redis Use Cases, November 7, 2017. https://www.objectrocket.com/blog/how-to/top-5-redis-use-cases

61

https://medium.com/@wishmithasmendis/from-rdbms-to-key-value-store-data-modeling-techniques-a2874906bc46
https://dzone.com/articles/redis-replication-vs-sharding
https://tech.trivago.com/2017/12/19/how-trivago-reduced-memcached-memory-usage-by-50
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf
https://www.objectrocket.com/blog/how-to/top-5-redis-use-cases

Credits

Logo pictures from Wikipedia.
SioW, July 3, 2006, https://www.flickr.com/photos/curioussiow/182224885.
Shepherd Distribution Services, October 15, 2010,
https://www.flickr.com/photos/shepherd-distribution-services/5395849861.
https://openclipart.org/detail/94723/database-symbol.
heschong, May 14, 2007, https://www.flickr.com/photos/heschong/510216272.
DM, April 27, 2011, https://www.flickr.com/photos/dmott9/5662744650.
othree, November 19, 2013, https://www.flickr.com/photos/othree/10945272436.

62

https://www.flickr.com/photos/curioussiow/182224885
https://www.flickr.com/photos/shepherd-distribution-services/5395849861
https://openclipart.org/detail/94723/database-symbol
https://www.flickr.com/photos/heschong/510216272
https://www.flickr.com/photos/dmott9/5662744650
https://www.flickr.com/photos/othree/10945272436

