
I404B NoSQL

Session 1

NoSQL vs SQL:
History and Evolution

Sébastien Combéfis Fall 2019



This work is licensed under a Creative Commons Attribution – NonCommercial –
NoDerivatives 4.0 International License.



Objectives

From the relational model to NoSQL models

Comparison of the two paradigms

History of the emergence of NoSQL

ACID and BASE properties

Interest and use of NoSQL models

Big Data and the 4Vs

Distributed architecture

Overview of NoSQL data models

3



NoSQL

What does NoSQL stand for?

non SQL

non relational

not only SQL Not your grandfather’s database?

4





Relational vs NoSQL



Enterprise Computing

Many changes in the technology used occurred in enterprises

Programming languages, architectures, platforms, etc.

Stability in the way data are stored

Relational databases have always been used since then

Some successful challengers do exist in small niche markets

Architects still choose relational databases

7



Software and Data

A company uses software and stores data

Those two elements are as independent as possible

Data often lives longer than softwares

New softwares must support existing data

Data must be as stable as possible

Easily understandable and accessible through an API

8



Data

Need to organise data is at the heart of computer science

While optimising storage and retrieval

Several other important sub-functions

Security, protection against inconsistencies, etc.

Storage on
mass memory

Data
retrieval

9





I hate databases...

Most developers do not like databases

Interact with a DBMS (DataBase Management System)

Learn the SQL language (Structured Query Language)

Links between data in the database and those in the program

Database seen as an intrusion of an external element

With very poor integration with the application code

11



Emergence of NoSQL

Need to store large amounts of data

Moving from large platforms to server clusters

New database engines emerged under the NoSQL name

Cassandra, Mongo, Neo4j, Riak, etc.

Lessening the traditional data consistency constraint

For performance, scalability, easy programming, etc.

12



Relational Model Strength

Relational model based on a standard model

Guarantees about data consistency (constraints)

Efficient and persistent data storage (better than files)

Concurrent read/write access to data (transactions)

Integration and collaboration of enterprise applications

Realised with an integration through shared database

13



End of Relational Model?

Relational databases are powerful and stable...

Not ready to disappear in the short and medium term

...but they are no longer sufficient

Unnecessary heaviness to store certain types of data

Hybrid systems combining several technologies

Concurrently, cooperatively, in a distributed way, redundantly...

14



History



Timeline

1950 Hierarchical model development (IMS)

1970 Appearance of relational model (Edgar F. T. Codd)

1980’s Domination of the relational model

2000’s Emergence of the NoSQL term

2011 Emergence of NewSQL

16



Hierarchical Model (1)

Building relationships from parents to children

Limited to one-way relationships

Database consists of records with fields

Grouped into record types

IMS engine created by IBM (Information Management System)

Used by NASA to manage building materials (started in 1968)

17



Hierarchical Model (2)

Hierarchy diagram representing a service

Fields of the different record types included

(Service name, Responsible)

(Part number, Designation) (Employee number, Name, Salary)

(Provider name, Address)

Service

Part Employee

Supplier

Level 0

Level 1

Level 2

18



Relational Model

“A Relational Model of Data for Large Shared Data Banks”

Edgar Frank “Ted” Codd, Ph.D. (1923–2003)
IBM Research, San Jose, California, USA

ACM A.M. Turing Award 1981

Theory and practice of DBMS, esp. relational databases

Organisation of data according to a mathematical model

Based on set theory and relational algebra

Isolation of access to data and physical implementation

Thanks to a high-level declarative language

19



System R

First implementation of SQL with the System R prototype

Developed in 1974 to experiment Codd’s concepts

SEQUEL language (Structured English Query Language)

Access method: RSS (Research Storage System)

Optimising SQL processor: RDS (Relational Data System)

Pratt & Whitney first customer of System R in 1977

20



Relational Model Evolution

Codd’s

System R

SQL/DS

DB2

Ingres

Postgres

PostgreSQL

Informix Sybase

Microsoft
SQL Server

Oracle mSQL

MySQL

MariaDB

A more complete RDBMS Genealogy has been proposed by HPI (see references).

21



From OLTP to OLAP

Online Transactional Processing (OLTP)

Purely transactional use of data (management)

Online Analytical Processing (OLAP)

Dashboard, historical and predictive analysis (statistics)

Limitation of the relational model for OLAP

Aggregates, query optimisation, indexing... not enough

22



IT System Data

Division of an IT system in two parts

A rather transactional part and a more analytical one

Business Process

Business Data Warehouse

OLTP

Transactions

OLAP

Informations

Large number of small trans-
actions (INSERT, UPDATE,
DELETE). Must be fast and
ensure integrity.

Small volume of transactions,
but complex queries requiring
aggregations. Must have a
minimal response time.

23



Relational Model Issues

1 Converting information from natural representation to tables

2 Reconstruction of the information from tables

3 Need to model data (semantic) before storing it

4 Rigid schema forcing data from one column to have the same type

5 Difficult to scale (scaling)

6 Difficulty making joins between different systems

7 Several existing dialects of SQL (portability)

8 Some business rules difficult to express in SQL

9 Approximate and fuzzy searches difficult

10 No efficient storage and validation of complex documents

24



June 11, 2009

Meetup by Johan Oskarsson at the Hadoop summit @ SFO

Software developer based in London for Last.fm

Choosing a short name, memorable, with few Google results

#NoSQL “open-source, distributed, nonrelational databases”

Several common characteristics to these databases

Do not use the relational model, nor SQL

Open source

Designed to be run on large clusters

Based on needs of web properties in the 21st century

No schema, possible to add field without control
25



DBMS Timeline

Popular database management systems from 1980s to now

With the co-existence of RDBMS and NoSQL today

Database Management System

Flat file Database

Relational Database

Hierarchical Database
RDBMS

NoSQL

Key-Value Column
Document

Graph

1980s

now

26



The NoSQL World

http://nosql-database.org
http://nosql.mypopescu.com/kb/nosql

27

http://nosql-database.org
http://nosql.mypopescu.com/kb/nosql


NoSQL Interest

Increased productivity during the development

Time saving when mapping database to the memory

Less code to write, debug, maintain and evolve

Amount of data on a large scale

Fast storage of large amounts of data

Database distributed on server clusters

28



NewSQL

New tendency to combine strengths of SQL and NoSQL

Guarantees from relational model with flexibility of NoSQL

Often referred to as “SQL on Steroids” by the community

Based on the relational model and the SQL language

Scalability, flexibility and high performance from NoSQL

ACID properties satisfied with horizontal scaling

The power of NoSQL when heavy OLTP transaction volumes

29



ACID and BASE



ACID Properties

Set of properties on transactions in databases

Atomicity, Consistency, Isolation and Durability

Definition by Reuter et Härder in 1983

One transaction makes all or nothing (e.g. if power failure)

Database changes from one valid state to another valid state

Concurrent execution of transactions as if they were sequential

A committed transaction confirmed and stored

31



BASE Properties

Managing consistency loss by maintaining reliability

Basically Available, Soft state et Eventual consistency

Constraints relaxed compared to ACID properties

Always a response: failure or inconsistent data possible

The state can change over time, even when no input

The system will sooner or later be consistent

32



CAP Theorem

CAP theorem stated by Eric Brewer for distributed systems

Consistency, Availability et Partition tolerance

Initially only calculation distribution and now data distribution

Clusters or grids to increase the total computing power

Three guarantees not satisfiable for a distributed system

Consistency of all data on all the nodes

Availability of all data even when losing of a node

Partition tolerance to a failure not disconnecting the cluster

33



Shared Something vs Nothing

Shared-Nothing distributed-computing architecture

Nodes do not share any memory or storage

Each update request is satisfied by a single node

Elimination of single-point of failure, very easy to scale

Shared-Something distributed-computing architecture

Hybrid approach between shared-everything and shared-nothing

Typically shared-memory nodes and interconnection network

34



ACID or BASE? (1)

ACID desired in a “shared something” environment

Pessimistic: force consistency and end of transactions

A everything or nothing, commit ou rollback
C no inconsistent data
I no knowledge of concurrent transactions
D committed transaction persistance

BASE implemented in a “shared nothing” environment

Optimistic: accept temporary inconsistencies

BA guaranteed by replication
S consistency to be guaranteed by the application
E stale data possible, eventual consistency

35



ACID or BASE? (2)

Conjecture related to the CAP theorem

Only two of the three CAP requirements can be met

Three situations are possible

CA ∼ ACID: one unique central server (with replication?)

CP: either “w N, r 1”, or “w 1, r N” (too slow?)

AP = BASE: no strong consistency guaranteed

36



Big Data



Big Data

Increase of the volume of data handled

In particular companies and organisations related to the internet

Exponential increase to petabytes of data (1015)

Scientific data, medical databases

Social networks, phone operators

Economic and social indicators

National territory defence agencies

Challenging to manage and process this huge amount of data

Not within the reach of the traditional relational model

38



4Vs (1)

Big Data characterised by an unlimited amount of datasets

Data very complex to collect and to store

Data follows the 4Vs

Volume of Pbytes, or even Ebytes, of data

Velocity for data creation, storage, analysis and visualisation

Variety of sources and types for data (image, video, sound...)

Veracity of data, obsolescence, integrity and security

Two other Vs that are also important

Validity of data, correct and accurate to take decision

Volatility how long is data valid and should be stored
39



4Vs (2)

40



Open Data

Some open data should be freely available to everyone

To use and to republish as they wish

Can be related to linked data, resulting in linked open data

Sometimes data only accessible under specific conditions

Open may be a problem with commercially valuable data

Access restriction, license, copyright, patent, charge, etc

A large variety of sources do provide open data

Government, public or private companies, research centres, etc.

41



Open Data Source

42



Open Data Source

42



Open Data Source

42



Open Data Source

42



Open Data Source

42



Main Actors

43



Technological Evolution

First DBMS built around mainframes

With the limitations of storage capacities of those time

Several technological evolutions removed those constraints

Generalisation of network interconnections

Increased available bandwidth over internet

Decreased cost of commodity machines

44



Google FS

Proprietary distributed file system developed by Google

Google File System (GFS) presented in 2003

Redundant and resilient storage on a cluster of machines

Average and “disposable” power (commodity hardware)

FGS has several nice characteristics

Designed for machine-machine interactions

Executed in the user space, not in OS kernel space

Manage files of several gigabytes

Automatic replication of data by chunkservers

45



MapReduce

Programming paradigm and associated implementation

Processing and generation of large amounts of data

Parallel algorithm distributed on a cluster

Implementation based on two functions

Map performs an operation on a list (sort, filter...)

Reduce groups data into one single result (sum, max...)

46



Apache Hadoop

Hadoop open source implementation of MapReduce in Java

By Doug Cutting, named after his son’s toy elephant

Hadoop Distributed FileSystem (HDFS)

Inspired by the overview publication on GFS

Framework used by many companies

Supported by Microsoft (on Windows Azure and Server)

Yahoo! cluster with 4000 machines, soon 10000 with v2.0

Facebook announces installation of HDFS with 100 petabytes

47



BigTable

GFS-based data management system

Proprietary solution again developed by Google

Data consistency management and distribution on GFS

Just working like a gigantic distributed hash table

Several open source implementation HBase (Apache)

For example used by eBay, Yahoo! and Twitter

48



Dynamo

Distributed and proprietary key-value pairs storage (Amazon)

Implemented by Amazon in Simple Storage Service (S3)

Four key principles of Dynamo storage system

Incremental scalability with no influence on operator/system

Symmetry with all the nodes being equal

Complete decentralisation with no central role

Heterogeneity by sharing work according to resources

Creation of several NoSQL engines based on Dynamo

Cassandra, Riak, Voldemort project (LinkedIn)...

49



Data Model



Impedance mismatch (1)

Object-relational impedance mismatch with SQL

Moving from relational to object is done with an impedance

Difference between relational model and memory structure

Relations and tuples versus complex data structures

Appearance of object oriented programming languages

Object-Relational Mapping (ORM) such as Hibernate...

51



Impedance mismatch (2)

1 class Address :
2 def __init__ (self , street , number , zipcode , city):
3 self. __address = (street , number , zipcode , city)
4
5 def __str__ (self):
6 return ’{}, {}\n{} {} ’. format (* self. __address )
7
8 ecam = Address (" Promenade de l’Alma", 50,
9 1200 , "Woluwé -Saint - Lambert ")

10 wolubilis = Address (" Cours Paul - Henri Spaak ", 1,
11 1200 , "Woluwé -Saint - Lambert ")

Address
Id Street Number CityID
1 Promenade de l’Alma 50 1
2 Cours Paul-Henri Spaak 1 1

City
Id Zipcode Name
1 1200 Woluwé-Saint-Lambert

52



Integration vs Application (1)

Coordination of several applications around data

Sharing data in a single common database

Difficult to change the structure of the database

Non-trivial to ensure data integrity

SQLSQL

53



Integration vs Application (2)

Access to the database by a single application

Provides an access interface to other applications

Web services deployment and services oriented architecture

Greater format flexibility for exchanged data

SQL

JSON/HTTP

XML/HT
TP

54



Data Model (1)

Model with which data are perceived and manipulated

Different from the disk storage model

Relational model consists in tables with rows

Columns with values that can reference other rows

Moving to a model representing a collection of aggregates

Unit of information processed, stored and exchanged atomically

55



Data Model (2)

Four main data models in the NoSQL world

Detailed analysis of one example for each model

No single and unambiguous classification

Some databases cover several models

Data Model Database examples

Key-Value BerkeleyDB, Memcached, Redis, Riak...

Document CouchDB, MongoDB, OrientDB...

Column Amazon Simple DB, Cassandra, HBase...

Graph FlockDB, HyperGraphDB, Neo4j, OrientDB...

56



Aggregate

Operation on complex and structured data units

To overcome the limitations of the relational model tuples

Possible to nest lists and other structures in aggregate

Different “objects” handled as units

Aggregate is the unit to handle and manage concurrency

Facilitating the distribution of data on clusters

57



Relation vs Aggregate (1)

Fully normalised model without any duplicate data

May required a lot of entities and associations

Customer
name Order

Billing
Address

Address
street
city
state
post code

Order
Payment

Order
Item

Product

1 ∗

1
∗

∗

1

1 ∗

∗

1

1
∗

1
∗

1

1
shipping Address

58



Relation vs Aggregate (2)

Customer
Id Name
1 Martin

Order
Id CustomerId ShippingAddressId
99 1 77

Product
Id Name
27 NoSQL Distilled

BillingAddress
Id CustomerId AddressId
55 1 77

OrderItem
Id OrderId ProductId Price
100 99 27 32.45

Address
Id City
77 Chicago

OrderPayment
Id OrderId CardNumber BillingAddressId txnId
33 99 1000-1000 55 abelif879rft

59



Relation vs Aggregate (3)

Model consisting of two main aggregates

Customer and Order composed of “sub-aggregates”

Customer
name Order

Address
street
city
state
post code

Order Item
price

Payment
ccinfo
txnId

Product
name

1 ∗

billing Address ∗

∗
1

∗ order payment∗

1
shipping Address

1 billing Address

60



Relation vs Aggregate (4)

1 # Customer
2 {
3 "id": 1,
4 "name": " Martin ",
5 " billingAddress ": [{"city": " Chicago "}]
6 }
7
8 # Order
9 {

10 "id": 99,
11 " customerId ": 1,
12 " orderItems ": [{
13 " productId ": 27,
14 " price ": 32.45 ,
15 " productName ": " NoSQL Distilled "
16 }],
17 " shippingAddress ": [{"city": " Chicago "}],
18 " orderPayment ": [{
19 " ccinfo ": "1000 -1000",
20 " txnId ": " abelif879rft ",
21 " billingAddress ": {"city": " Chicago "}
22 }]
23 }

61



Key-Value

Aggregate stored in key-value form

The key acts as the unique identifier of each aggregate

An aggregate is retrieved thanks to its key

Key-value stores work as lookup tables

62



Document

Aggregate stored in document form

Each document is uniquely identified by an ID

Retrieving the whole document or part of a document

From queries on the fields of the aggregate

Creation of an index based on the content of documents

To speed up search operations in the database

63



Column

Columns are stored on the disk instead of rows

Column storage can be seen as a two-level map

Key-value structure with row identifier as key

The second level contains information about the columns

64



Graph

Possible to have relations between aggregates

With automatic update possibility

Useful for small records with a lot of links

Set of nodes connected by edges

Social networks, preferences, eligibility rules...

“What are all the things Theo and Yannis both like?”

65



NoSQL Characteristics



Schema-Less Database

NoSQL databases do not have data schema

Unlike the rigid structure imposed by the relational model

Unrestricted addition of data of any type

Such as key, document, column, edge and properties

Possible to store non-uniform data

Which eliminates the need to have NULL values

67



Implicit Schema

Assumptions about the data structure in the code

The database remains ignorant, it is the application that checks

Danger if multiple applications on the same database

They have to agree on the data schema

Data migration must always be done carefully

Should it be with the relational or NoSQL models

68



Developer Centered

Developer centered development methodology

Design and implementation of the application architecture

Data modelling

Two different approaches RDBMS vs NoSQL

Relational data models are defined thanks to theory

Application queries and configuration to be supported

69



NoSQL Architecture

Building database on relational with DBMS

Description of data structures and storage

Data recovery process and reliability

Data in tables (record and column) and not repeated

Importance of primary keys

Data management much more flexible with NoSQL

Distribution across multiple servers, platforms, processors

Gradual evolution of the (implicit) data schema

70



Data Operation and Relation

CRUD standard operations with RDBMS

Create, Read, Update, Delete

Much more diverse and varied operations in NoSQL

Large number of additions and updates

Operations on other entities than rows of tables

NoSQL not adapted to data with a lot of relations

RDBMS have one-to-one, one-to-many and many-to-many

71



References

Emmanuel Rodriguez, What does NoSQL mean?, April 23, 2019.
https://medium.com/@emrod718/what-does-nosql-mean-ec79619948a3
Two-Bit History, The Most Important Database You’ve Never Heard of, October 7, 2017.
https://twobithistory.org/2017/10/07/the-most-important-database.html
Edgar E. F. Codd, A relational model of data for large shared data banks, 1970, Communications of the ACM, Vol. 13,
No. 6, pp.377-387.
Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, James N. Gray, W. Frank King, BruceG. Lindsay,
Raymond Lorie, James W. Mehl, Thomas G. Price, Franco Putzolu, Patricia G. Selinger, Mario Schkolnick, Donald R.
Slutz, Irving L. Traiger, Bradford W. Wade, & RobertA. Yost, A history and evaluation of System R, 1981,
Communications of the ACM, Vol. 24, No. 10, pp.632-646.
Hasso Plattner Institut, RDBMS Genealogy, October 2018. https://hpi.de/naumann/projects/rdbms-genealogy.html
Martin Fowler, NosqlDefinition, January 9, 2012. https://martinfowler.com/bliki/NosqlDefinition.html
Syed Sadat Nazrul, CAP Theorem and Distributed Database Management Systems, April 24, 2018.
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
IBM Big Data & Analytics Hub, The Four V’s of Big Data. https://www.ibmbigdatahub.com/infographic/four-vs-big-data

72

https://medium.com/@emrod718/what-does-nosql-mean-ec79619948a3
https://twobithistory.org/2017/10/07/the-most-important-database.html
https://hpi.de/naumann/projects/rdbms-genealogy.html
https://martinfowler.com/bliki/NosqlDefinition.html
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://www.ibmbigdatahub.com/infographic/four-vs-big-data


Credits

Logos pictures from Wikipedia.
Oliver Widder (Geek and Poke), January 27, 2011, http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html.
N i c o l a, March 22, 2014, https://www.flickr.com/photos/15216811@N06/13495437084.
https://openclipart.org/detail/34537/tango-drive-hard-disk.
https://openclipart.org/detail/59167/magnifying-glass.
Scott Adams (Dilbert), September 20, 2013, http://dilbert.com/strip/2013-09-20.
Stanley Zimny, December 3, 2011, https://www.flickr.com/photos/stanzim/10457956743.
Paul Rand, 1972, https://en.wikipedia.org/wiki/File:IBM_logo.svg.
SchuminWeb, November 25, 2010, https://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg.
Hydrargyrum, July 23, 2015, https://en.wikipedia.org/wiki/File:Pratt_%26_Whitney_UTC_logo.svg.
biologycorner, August 24, 2009, https://www.flickr.com/photos/biologycorner/3870547053.
luckey_sun, April 9, 2012, https://www.flickr.com/photos/75279887@N05/6914441342.
Luke Vu, November 20, 2011, https://www.flickr.com/photos/lukevu/6380430175.
https://openclipart.org/detail/94723/database-symbol.
https://openclipart.org/detail/35407/tango-applications-other.
Diego Lizcano, June 25, 2017, https://www.flickr.com/photos/diegolizcano/35522041701.

73

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html
https://www.flickr.com/photos/15216811@N06/13495437084
https://openclipart.org/detail/34537/tango-drive-hard-disk
https://openclipart.org/detail/59167/magnifying-glass
http://dilbert.com/strip/2013-09-20
https://www.flickr.com/photos/stanzim/10457956743
https://en.wikipedia.org/wiki/File:IBM_logo.svg
https://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg
https://en.wikipedia.org/wiki/File:Pratt_%26_Whitney_UTC_logo.svg
https://www.flickr.com/photos/biologycorner/3870547053
https://www.flickr.com/photos/75279887@N05/6914441342
https://www.flickr.com/photos/lukevu/6380430175
https://openclipart.org/detail/94723/database-symbol
https://openclipart.org/detail/35407/tango-applications-other
https://www.flickr.com/photos/diegolizcano/35522041701

