
A Formal Framework for Design and Analysis
of Human-Machine Interaction

Sébastien Combéfis1 Dimitra Giannakopoulou2

Charles Pecheur1 Michael Feary2

1University of Louvain (UCLouvain)
ICT, Electronics and Applied Mathematics Institute (ICTEAM)

2NASA Ames Research Center (ARC)

October 11, 2011

[SMC 2011, Anchorage, AK, USA]



This work is licensed under a Creative Commons Attribution – NonCommercial –
NoDerivatives 4.0 International License.



Human-Machine Interaction

user manual,
training . . .

system
model

system

interface user

mental model

Abstracts

What is a good system abstraction?
How to automatically generate such abstractions?
How to evaluate whether a system is well designed?

3



Outline

1 Modelling

2 Interaction Analysis

3 Framework and evaluation

4 Conclusions

4



Modelling

System modelled as an HMI-LTS
Abstracted as conceptual model
Commands and observations

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut

Full-control = good abstraction
During interaction:

same set of commands
user expects all possible observations

5



Interaction Analysis

Interaction between a user and a system through two models:

System model models behaviour of the system

Mental model is an abstraction of the system model capturing
the knowledge of the operator (conceptual model)

The interaction is captured by the parallel execution of the
two models

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut

A press

6



Interaction Analysis

Interaction between a user and a system through two models:

System model models behaviour of the system

Mental model is an abstraction of the system model capturing
the knowledge of the operator (conceptual model)

The interaction is captured by the parallel execution of the
two models

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut

A press A/off A/on

press

press

6



Full-control property

Full-control property captures good system abstraction

During the interaction between user and system:
The user should know exactly the available commands . . .
. . . and at least all the possible observations

Given a systemMM = 〈SM , s0M ,Lc ,Lo,→M〉 and an
abstraction for itMU = 〈SU , s0U ,Lc ,Lo,→U〉:

MU fcMM iff :

∀σ ∈ Lco∗ such that s0M
σ==⇒ sM and s0U

σ−−→ sU :

Ac(sM) = Ac(sU) ∧ Ao(sM) ⊆ Ao(sU)

7



Generation Problem

Goal: Given the model of a system, automatically generate a
minimal full-control abstraction

Motivation:
Extract the minimal behaviour of the system, so that it can be
controlled without surprise

Help to build artifacts: manuals, procedures, trainings, . . .

If such abstraction does not exist, provide feedback to help
redesigning the system

Reduction-based and learning-based algorithms

8



Categorizing behaviour

Behaviour from the system can be categorized into three sets:
Accepted behaviour must be known

Rejected behaviour must be avoided

Don’t care behaviour

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut

〈 press, press 〉 ∈ Acc

〈 press, fadeOut, press 〉 ∈ Rej

〈 press, endFading 〉 ∈ Dont

9



Full-control determinism

Mental model generation will fail for systems which are not
full-control deterministics

After the execution of the same trace, the enabled commands
are not the same

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut After executing 〈press〉, reaching:

"on" where press and fadeOut
are enabled
"dies" where no commands are
enabled

10



Checking system against tasks

Check whether a system covers the user tasks

Using the full-control criterion but reversing the role of
commands and observations

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut

onoff dead

press

press burnOut

11



Framework

Both algorithms have been implemented within
Java Pathfinder (JPF) model-checker

Systems encoded with the JPF-statechart extension

Possibility to get models from ADEPT

.xmi XMIParser .java

JPF

SC2LTS

.txt LTSLoader LTSLoader .txtLTS

FCCheck

true/false

Bisim Learning

LTS LTS

12



Evaluation

The methodology has been tested on two examples:

Therac-25 (110 states and 312 transitions)

Shows how mode confusion can be analyzed with our
framework by adding command loops with modes

Video Cassette Recorder (1088 states and 3740 transitions)

Shows how non-full-control-determinism can occur and how to
redesign the system to solve it

13



Conclusion and further work

Conclusion
Full-control property captures good abstraction

Methodology proposed to analyse interaction

Framework developed within Java Pathfinder and integration
with ADEPT toolset

Further work
Experiment with more realistic examples

Experiment with variant of full-control property

Integrate other kind of properties to be checked

14



Credits

NASA, September 12, 1993, https://commons.wikimedia.org/wiki/File:1993_s51_Liftoff.jpg.

15

https://commons.wikimedia.org/wiki/File:1993_s51_Liftoff.jpg

	Modelling
	Interaction Analysis
	Framework and evaluation
	Conclusions

