
Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 1

Web Platform to Support Teaching Programming with
Snap! and Manage Pupils’ Learning

Sébastien Combéfis, s.combefis@ecam.be
Electronics and IT Unit, École Centrale des Arts et Métiers (ECAM), Belgium.

Chantal Poncin, chantal.poncin@uclouvain.be
Computer Science Engineering Department, Université catholique de Louvain, Belgium.

Abstract
Educating young people to computer science, especially in schools, is very important. For that
purpose, platforms and educational tools have been developed, in particular to teach
programming. This paper is about the development of an online platform, dedicated to pupils
between 10 and 14 years old, that supports them when learning programming. The platform uses
Snap! with a lightweight learning management system (LMS) added on top of it. The goal of this
LMS is to help teachers managing lessons and activities to build courses that they can use in
their classrooms. This paper shows the structure of these courses and how teachers can build
them. It also draws up features under development that will help teachers to get statistics to
follow the progression of their pupils.

Keywords
Snap!, LMS, teaching programming, programming courses design

Introduction
Teaching computer science in schools, and in particular programming, is not a widespread
practice all over the world. Some countries do have computer science related activities integrated
in their curriculum of primary and secondary schools, but it is not the case everywhere, such as in
Belgium, for example.

To offer programming courses in schools, there are two main elements to take into account.
Firstly, activities must be developed and teachers must be trained to hold them in classrooms with
their pupils. Secondly, software to support these activities must be made available to pupils; they
have at least to be installed on the computers of the school.

This paper proposes an online web platform that addresses the two afore-mentioned needs.
Activities to be used by teachers and that they can learn by themselves are proposed on an online
web platform, consequently avoiding any prior installation.

Motivation
The motivation of this work is to build a platform whose goal is to introduce programming
activities for the education of pupils whose age is between 10 and 14 years old. The platform
must be intuitive and simple enough to be usable in countries where computer science is not
present in existing curriculum and where computer science teachers do not exist.
Teaching programming to young pupils enhance several skills such as logical thinking, problem
solving or structured reasoning. Europe indicated recently, in a report published jointly by

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 2

Informatics Europe and ACM Europe, that programming is a good exercise for children to
acquire logical thinking and reasoning (Gander, et al., 2013).

Moreover, in order to focus on the teaching, the proposed platform must not require any complex
installation, and it should be possible for pupils to work on the activities at home after school if
they are willing to. Those two constraints drive this work towards an online web platform. There
are several possible ways to teach programming. This work is based on Snap!, a platform that
supports block programming. That kind of programming, compared to more classical solutions
based on programming languages such as Python or JavaScript, is more suitable for young
children without any prior programming experience (Wyffels, et al., 2014).
Finally, the proposed platform has been developed to introduce computer science and
programming in Belgian schools, in particular in the French-speaking part of Belgium as a first
step. For that reason, all the content is in French in the current version of the platform.

Related Work
Scratch is a graphical programming language developed by the MIT, and whose purpose is to
teach programming to young children (Maloney, et al., 2004). Programs are built with blocks,
representing elementary actions, which are combined with a drag-and-drop interface. Snap! is an
open-source re-implementation and extension of Scratch developed at Berkeley University
(Harvey, & Mönig, 2015). Snap! adds support for functions and procedures, lists and sprites to
the language. Another change introduced by Snap! is that JavaScript has been used instead of
Flash for its implementation, making Snap! suitable to develop web application that can directly
interact with any other JavaScript-based applications. Both Scratch and Snap! are programming
platforms that allow people to create and run programs, but they do not support the management
of activities, nor make it possible to follow the progress of pupils.

Blockly is an open source library based on web technologies that supports block programming
(Fraser, 2013). It has the advantage to allow its users to export source code of the block program
in JavaScript or Dart, for example. Blockly is not an educational platform in the sense that it can
be used for education as well as for business, games, etc. It is just an organisation of functions
written in JavaScript into puzzle pieces that can be arranged together and executed when
triggered. Blockly Games1 proposes a learning path composed of several lessons, from easy ones
to more difficult ones. Code.org2 is a non-profit organisation that proposes online lessons to learn
programming. These lessons are split into several steps, leading the learners from basic concepts
to advanced ones. Code.org extensively uses drag-and-drop and block-based programming. The
learning paths of Blockly Games and lessons of Code.org inspired the work presented in this
paper.

The RSnap platform
The platform that is proposed in this work, named RSnap, combines the Snap! platform for the
activities and a web platform developed in Ruby on Rails to manage the activities, and to allow
teachers to follow the pupils’ progress. Combining those two technologies provides a modern
platform accessible from any computer with an access to the Internet and a recent browser.

1 https://blockly-games.appspot.com/.
2 https://studio.code.org/.

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 3

Figure 1 shows the homepage of the platform. On this page, the pupil can choose to start a new
chapter (Chapitres) or to launch a free project (Projets libres). A chapter is a set of missions that
the pupil has to realise sequentially. A mission is unlocked only when the previous ones have
been realized correctly.

Figure 1. Homepage of the RSnap platform.

Mission and chapter
One chapter covers one learning outcome that the pupil must achieve. For example, the goal of
the first chapter that has been designed is to make the pupils discovering the platform and the
Snap! environment. The learner has to move a mouse seen from above the ground. In order to
accompany the pupil during the learning, a chapter is split into a sequence of missions. Each
mission has a sub-goal smaller than the one of the chapter, and those sub-goals are used to lead
the pupil towards the goal of the chapter.
Figure 2 shows the four missions of the first chapter. Only the first one is available for the pupils,
but the four missions are already visible. The progression between the missions is as follows:

- To achieve the first mission, the pupil has just to write a program that moves randomly the
mouse. A block “move randomly” has to be used to achieve that goal.

- For the second mission, the mouse has to reach a target, the cheese, following a linear
path. A block “move forward” has to be used three times.

- In the next mission, the path is more complex (an L-shaped path) and requires the mouse
to turn left once. A block “turn left” has to be used once.

- Finally, the last mission requires the mouse to follow an even more complicated path that
requires to turn left and to turn right. The pupil must combine the three following blocks:
“move forward”, “turn left” and “turn right”.

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 4

Figure 2. A chapter is divided into a sequence of missions.

Splitting a chapter into missions makes it possible not to overwhelm the pupils with a lot of
blocks at the beginning. Thanks to a feature of the platform, the pupils discover the blocks
incrementally, when they are useful to them. It gives them time to assimilate and understand their
purpose, before moving to the next, more advanced, mission.
Finally, as shown on Figure 3, a detailed description of the goal of each mission is made available
to the pupil. The screenshot shows the guide as presented before launching the mission into
Snap!, but it will still be available, as a popup window, within the Snap! environment. This
description is populated with the different blocks that the pupil will learn and use in the mission.

Figure 3. Each mission has a guide sheet to help the pupil to achieve it.

The integration between the LMS providing the chapters/missions structure and the Snap!
environment is very important and drove the design of RSnap from its beginning. RSnap is not

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 5

just a heterogeneous juxtaposition of the two components, it is an effective integration whose
goal is to go through the chapters and missions, hand-by-hand with the pupil. As it can be seen on
Figure 4, one way to achieve this integration is by providing menus to go from Snap! to the
chapters/missions structure, for example.

Figure 4. A menu makes it possible to navigate back to the chapters/missions structure.

Checking success of a mission
RSnap proposes a new kind of block, in addition to those existing in Snap!, that is used to check
whether a pupil succeeded a mission. The start block is activated when the pupil starts his/her
program. The end block is activated when the program of the pupil has finished its execution.
That one is useful for the teacher since it allows him/her to check whether the mission has been
successfully completed. For example, the teacher can check whether the character has reached the
right location, or has drawn the required drawing, etc.

Teachers’ view
The platform also provides support and help to the teachers. First of all, it is possible for teachers
to create by themselves new missions. The teacher can choose to design a new mission from
scratch or to start from an existing one, creating a copy of it. It offers the possibility for a teacher
to create a variant or to improve an existing mission. A mission is composed of two parts:

- The LMS part provides a title, a description and several options;
- The program part of the mission is designed on the Snap! interface.

The description of each mission is defined as HTML content that can contain links and pictures,
everything being stored in a database. Concerning the design of the program part, teachers have
access to more options in the Snap! interface, allowing them for example to decide which blocks
to show or hide to the pupils. It is therefore with that feature that teachers can build missions
incrementally showing blocks to the pupils.
The platform also offers the ability to organise missions into chapters. After having created a new
chapter, a teacher can create new missions for it or integrate existing ones. This opens

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 6

collaboration possibilities between teachers that can share their ideas of learning paths. A teacher
will have access to the pool of all the missions that have been created, and can therefore pick a
mission in this pool to populate his/her chapters.
The topmost level of organisation proposed by the platform is courses. A course is a set of
chapters, for which a pupil can be registered. This level is the one at which a teacher will be able
to follow pupils and will get statistics about their progress. For each pupil, teachers can monitor
in which chapter they are and which missions they achieved. Given those statistics and
monitoring tool, the teacher can precisely follow up how the pupils are performing. It is a
precious feedback for the teacher, especially when it is his/her turn to provide feedback to the
classroom. The teacher can also manage the chapters/missions that are accessible to pupils, for
each course. That feature makes it possible for the teacher to control the progression of the pupils,
and to avoid them working on their own on more advanced missions before feedback sessions in
classroom, for example.

Technologies
RSnap is built on existing widespread technologies used in web applications development. The
block environment that has been used is Snap! because it is open source and uses JavaScript,
which makes it easy to adapt and integrate with other web technologies. For example, the
interface has been customised by removing some unnecessary features, by adding new menus to
cooperate with the chapters/missions structure pages, by adding new blocks, etc.

The chapters/missions structure part of RSnap has been implemented with Ruby on Rails (RoR)
following the Model-View-Controller (MVC) pattern. Using RoR features, a management of
roles has also been added to the platform, to propose two different roles: pupil and teacher.
Details about the implementation are available in (Claessens, & Collart, 2014), and RSnap is
open source and is available at the following address: https://github.com/simonhock/rsnap.
For now, only the program part of missions can be exported/imported thanks to the Snap!
platform. The elements added in this work, and which are stored in a database, cannot be
exported/imported for now. A direct consequence is that all the teachers that would like to
collaborate must use the same instance of the platform installed on one unique server.

Evaluation
The proposed platform has been evaluated by proposing work sessions organised with teachers
with their classrooms. Those experiments have been organised during the “Printemps des
Sciences”, a week during which activities to promote sciences are organised with primary and
secondary schools. Five groups of pupils worked by pair during 1h30. Two classes were from
fifth year primary school (10-11 years old), one from first year secondary school (12-13 years
old) and one from second year secondary school (13-14 years old).

In addition to oral feedback that was collected during the activities, that allowed us to improve
the platform, a questionnaire has been submitted to pupils to collect their impression about the
platform. The questions were asked to get information about the difficulty, the success, the
entertainment and the understanding.

A preliminary analysis of the results of this survey has been performed on the second year
secondary school group. Figure 5 summarises the results. The level of perceived difficulty
increases from the first to the fourth chapter, which is expected whereas successive chapters
cover more and more difficult new concepts. The success is of 100% for the first chapter, but

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 7

pupils were not able to succeed completely the other three chapters. An explanation could be that
the increment between the first chapter and the other ones is too large, too much new concepts
being added without being understood well by pupils. The different chapters were entertaining for
the majority of pupils, and finally their understanding was not complete. It is surely correlated
with the success measure.
Looking at the programs they produced showed that even if the pupils succeeded the first
introductory missions, they did not manage to get the best solution for example missing the
opportunity to use a loop. However, those concepts were correctly used in subsequent chapters,
meaning that pupils maybe needed more missions to understand correctly some concepts. Such
analyses are useful and must be performed to better design chapters and missions.

Figure 5. Results of the survey proposed after the “Printemps des Sciences” activity to the second year

secondary school students, for the four chapters they worked on, successively measuring difficulty,
success, entertainment and understanding (pupils had to answer with yes/no).

Moreover, among all the participants, 55.3% of the pupils told that they would like to continue
working on the missions after the 1h30 session, in their school of even at home. Only 15.8% told
that they do not want to continue to work on the missions and the others have no opinion. We
indeed noticed that half children connected again on the platform after the “Printemps des
Sciences” week. They were maybe proud of their programs and showed them to other people, or
wanted to achieve more chapters/missions.
The main lessons learned from the informal oral feedback are:

- the activity allowed the pupils to get a better understanding about what programming is;
- most pupils declared that they have fun playing with the activities;
- and finally, teachers were very happy and impressed by the quality of the activities and

discovered a new field that they are willing to use in their classrooms.

Scratch2015AMS, Amsterdam, Netherlands

Combéfis, Poncin 8

Conclusion
The proposed platform fulfils its goal, that is, providing activities that teachers can make with
their pupils to teach programming and introduce them to computer science. The platform, which
is released as open source, does not require any installation difficult for the teachers since it can
be accessed through a browser. The split of chapters into a sequence of missions supports the
incremental learning of new concepts. Pupils are accompanied and teachers can track their
progression, which allows them to provide precise and individual feedback to each pupil.
Improvements are still being done to the platform. This latter will be used to build a training of
teachers, so that they can afterwards use it autonomously in their schools. Future work includes
adding a full export/import feature for chapters and missions. Tools to follow the progress of the
pupils of a course and to get statistics must be developed. Finally, the survey that has been lead
during the “Printemps des Sciences” event must be deeply analysed to improved the already
designed chapters and missions.

References
Fraser, N. (2013). Google Blockly: a web-based visual programming editor. Available from:
https://developers.google.com/blockly/. US: Google.

Claessens, S., & Collart, G. (2014). Plateforme web pour accompagner l’apprentissage de la
programmation par les 10-14 ans. Belgium: Université catholique de Louvain.

Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A., Drechsler, M., Mendelson, A.,
Stephenson, C., Ghezzi, C., & Meyer, B. (2013). Informatics Education: Europe cannot afford to miss the
boat. Report of the joint Informatics Europe & ACM Europe Working Group on Informatics Education.

Harvey, B., & Mönig, J. (2015). Snap! Reference Manual. US: Berkeley.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A sneak
preview. In Proceedings of the 2nd International Conference on Creating, Connecting and Collaborating
through Computing, (pp. 104-109). US: IEEE.

Wyffels, F., Martens, B., & Lemmens, S. (2014). Starting from Scratch: Experimenting with Computer
Science in Flemish Secondary Education. In Proceedings of the 9th Workshop in Primary and Secondary
Computing Education, (pp. 12-15). US: ACM.

Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International license (CC BY-NC-ND 4.0). To view a copy of this licence, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/

