State Event Models for the Formal Analysis of Human-Machine Interactions

Sébastien Combéfis¹ Dimitra Giannakopoulou² Charles Pecheur¹

¹Université catholique de Louvain (UCL) ICT, Electronics and Applied Mathematics Institute (ICTEAM)

²NASA Ames Research Center (ARC)

March 26, 2014

[FVHMS 2014, Palo Alto, USA]

- Automated formal analysis techniques for HMI systems
- Detection of potential automation surprises
- Conformance relation between actual system and mental model according to which it is operated

Formal Modelling

HMI-LTS extends LTS with inputs and outputs:

- Commands executed by the user
- Observations executed by the system and observed by the user
- Internal actions invisible to the user

Interaction Model

Interaction:

Represented with the synchronous parallel composition

Bad situations:

- A command missing on the system model (c₄)
- An observation missing on the mental model (o₁)

Full-control property

Full-control property captures safe interaction

During the interaction between a user and a system:

The user must know exactly the possible commands...

...and at least all the possible observations

 \mathcal{H} fc \mathcal{S} if and only if :

 $\forall \sigma \in \mathcal{L}^*$ such that $s_S \in (s_{0_S} \operatorname{after} \sigma)$ and $s_H \in (s_{0_H} \operatorname{after} \sigma)$:

 $A^c(s_S) = A^c(s_H)$ and $A^o(s_S) \subseteq A^o(s_H)$

Generation Problem

 Goal: Given the model of a system, automatically generate a minimal full-control conceptual model

Motivation:

- Extract the minimal behaviour of the system, so that it can be controlled without surprise
- Help to build artifacts: manuals, procedures, trainings,
- If such abstraction does not exist, provide feedback to help redesigning the system

ADEPT toolset

- Automatic Design and Evaluation Prototyping Toolset
- Java-based tool
- Support designers in early prototyping phases of automation interfaces

Autopilot ADEPT model I

Autopilot ADEPT model II

	0	1
L airspeedFeedbackTable		
INPUTS		
L airspeedSystemTable.outputState		
Maintain Airspeed Target	•	
Capture Airspeed Target	•	
Hold Current Airspeed	•	
Protect Airspeed Target		•
OUTPUTS		
c pfdAirspeedTape.currentValue		
v indicatedAirspeed	•	٠
c cautionLabel.background		
255, 204, 0		٠
c autothrottleModeFailureBar.opaque		
False	•	
True		
c pitchModeFailureBar.opaque		
False	•	
True		
c pfdAirspeedTape.preSelectedTarget		
v selectedSpeedTarget		•
C pfdAirspeedTape.selectedTarget		
▼ selectedSpeedTarget		•

State Event Models

ADEPT models combine state with transition information

- A state is made of *n* variables x_i ranging over domains D_i
- Only some state-variable are visible

$$\langle x_1 = v_1, \dots, x_n = v_n \rangle$$
 \rightarrow $\langle x_1 = v'_1, \dots, x_n = v'_n \rangle$

HMI-LTS are enriched with state-values

HMI State-Valued System Model

- Each state s is associated with a state-value $\mathcal{O}(s)$
- Two kinds of observations are possible in a system

HMI State-Valued Mental Model

- Transition are guarded with a state-value
- A transition will be executed if the guard is satisfied in the current state of the system

Enriched models to HMI-LTS

System model

Mental model

The transformation preserves the developed algorithms

- An enriched model for system and mental model
- Translation from ADEPT models (to be automated)
- Reverse translation from HMI-LTS to ADEPT to be done