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Context

Automatic assessment of codes

Programming learning platforms, MOOCs,
higher education courses, competitions...

Important part of the assessment is the feedback

Positive for success, to summarize what has been learned

Constructive for failures, to explain what is wrong

Impossible to foresee all the possible answers from learners

Trying to maximise the number of covered cases
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Motivation

Provide teachers with information about learners

Understanding learners’ difficulties

Getting a global overview of submitted codes

Different aspects of a program can be assesses

From functional testing to style checks

Not possible to anticipate all the possible submissions

Often the same mistakes, in particular for introductory courses
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Goals

One goal for each actor of the learning

Identify the main error classes produced by the learners

Given a set of submitted codes

Generate a good feedback to understand the failure

Given one submitted code that fails some tests

Offline analysis of codes for on-the-fly feedback generation

Find the best suitable feedback given a submitted code
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Similar codes

Two similar codes exhibit some common properties

In particular, they can contain the same error

Several ways to measure code similarity

Simple string comparisons (language-agnostic)

Comparing the ASTs (language-dependent)

Code plagiarism detection tools measure code similarity

Percentage of similar code, similar chunks identification...
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Error classes identification

Offline analysis of a set of submitted codes

Identification of the main error classes produced by learners

Two-step analysis from a set of code to a set of clusters

Distance matrix between codes via plagiarism detection

Cluster of codes via clustering

Code Plagiarism
Detection

Clustering

Set of
codes

Distances
matrix

Clusters
of codes
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Clusters

Each obtained cluster represents an error class

Contains a “central” member which is the representative

Several possible clusters given different configurations

Automatically adjusted or manually by the teacher
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Feedback generation

Association of one feedback for each representative ( )

Characterizing the error class represented by the cluster ( )

Distances between new code ( ) and representatives

Feedback of the nearest is chosen, if proximity close enough
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Experiments

Prototype of the analysis framework to perform experiments

Developed with the R programming language

Codes extracted from the Code Hunt dataset

Used 53 C# submissions from Sector4_Level6

Tools used for the analysis framework

Code plagiarism detection tool: JPlag

Clustering: k-medoids, Agglomerative Hierarchical Clustering
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JPlag

Two configuration items to setup

Programming language: C#

Sensitivity: greatest sensitivity since codes are short

Distance matrix dist(i , j) = max_possible_similarity − similarity

Language accepted : C# 1.2 Parser
Command line: -l c# -1.2 -t 1 *path to code files *
initialize ok
*n* submissions

Parsing Error in * file_1 *:
* file_1 *: * error_name *
...

*m* submissions parsed successfully !
*n-m* parser errors !

Comparing * file_1 *-* file_2 *: * similarity *
...
Comparing *file_n -1* -* file_m *: * similarity *
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k-medoids

The medoid of each cluster is chosen as its centre

That is the member closest to all the other ones

Requires the number of clusters to be chosen a priori

Chosen by the teachers before launching the analysis

Automatically chosen to optimise a function of interest

Increasing k until convergence of reconstruction error

Sum of distances between elements and their medoid
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Hierarchical Agglomerative Clustering

Incrementally build clusters from bottom to top

Starts with one cluster for each element

At each step, merge the two closest clusters

Ward’s min. variance favour compact and spherical clusters

Several advantages compared to k-medoids approach

Number of clusters should not be selected a priori

Generation of a dendrogram to select the desired clusters
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Experiment #1

k-medoids with k = 4 provides a good classification

1 Body with one or two instructions

2 Codes using the switch statement

3 Fibonacci, char procesing, using if and for statements

4 Seven different trends

Increasing k correctly splits the clusters further

Observed trends in the codes are correctly separated

14



using System ;

public class Program {
public static string Puzzle ( string s) {

char [] x = s. ToCharArray ();
int f1 = 1, f2 = 1, t;
for (int i = 0; i < s. Length ; i++) {

x[i] = (x[i] - ’a’ + f2) % 26 + ’a ’;
t = f1;
f1 += f2; f1 %= 26;
f2 = t;

}
return new string (x);

}
}

using System ;

public class Program {
public static string Puzzle ( string s) {

char [] x = s. ToCharArray ();
int f1 = 1, f2 = 1, t;
for (int i = 0; i < s. Length ; i++) {

x[i] = (char)((x[i] - ’a’ + f2) % 26 + ’a ’);
t = f1;
f1 += f2; f1 %= 26;
f2 = t;

}
return new string (x);

}
}



using System ;

public class Program {
public static string Puzzle ( string s) {

char [] x = s. ToCharArray ();
int f1 = 1, f2 = 1, t;
for (int i = 0; i < s. Length ; i++) {

x[i] = (x[i] - ’a’ + f2) % 26 + ’a ’;
t = f1;
f1 += f2; f1 %= 26;
f2 = t;

}
return new string (x);

}
}

using System ;

public class Program {
public static string Puzzle ( string s) {

char [] arr = s. ToCharArray ();
uint fibim2 = 0, fibim1 = 0, fibi = 1;
for(int i=0;i<arr. Length ;++i){

uint newchar = fibi % 26;
if(arr[i] + newchar > ’z ’)

arr[i] = arr[i] + newchar - ’z’ + ’a’ - 1;
else

arr[i] = (char)(arr[i] + newchar );
fibim2 = fibim1 ;
fibim1 = fibi;
fibi = fibim1 + fibim2 ;

}
return new string (arr);

}
}



Experiment #2

Hierarchical Agglomerative provides a good classification

Code from the same ideal cluster are together
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Evaluation (1)

Quality evaluation with a manual reference clustering

Measuring the distance from the ideal clustering

Score of a clustering between 0 and 1

A score of 1 means that the clusters are exactly the same
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Evaluation (2)
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Conclusion (1)

Analysis framework to generate feedback for learning

Offline analysis of error classes for teachers

On-the-fly analysis to generate feedback for learners

Measure of code similarity with code plagiarism detection

Error classes identification with clustering

Preliminary experiments are promising

20



Conclusion (2)

More experiments have to be performed

With Code Hunt datasets and others

Automatic selection of the number of clusters

Finding criterion function to evaluate a set of clusters

Using the framework with codes that do not compile

Replace code plagiarism detection tools

Evaluation of false positive and wrong feedbacks

Could the learner be surprised with a non relevant feedback
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