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Context

m Automatic assessment of codes

Programming learning platforms, MOOCs,
higher education courses, competitions...

m Important part of the assessment is the feedback
m Positive for success, to summarize what has been learned

m Constructive for failures, to explain what is wrong

m Impossible to foresee all the possible answers from learners

Trying to maximise the number of covered cases



Motivation

m Provide teachers with information about learners
m Understanding learners’ difficulties

m Getting a global overview of submitted codes

m Different aspects of a program can be assesses

From functional testing to style checks

m Not possible to anticipate all the possible submissions

Often the same mistakes, in particular for introductory courses



m One goal for each actor of the learning

m |dentify the main error classes produced by the learners
Given a set of submitted codes
m Generate a good feedback to understand the failure

Given one submitted code that fails some tests

m Offline analysis of codes for on-the-fly feedback generation

Find the best suitable feedback given a submitted code



Similar codes

m Two similar codes exhibit some common properties
In particular, they can contain the same error

m Several ways to measure code similarity
m Simple string comparisons (language-agnostic)

m Comparing the ASTs (language-dependent)

m Code plagiarism detection tools measure code similarity

Percentage of similar code, similar chunks identification...



Error classes identification

m Offline analysis of a set of submitted codes

Identification of the main error classes produced by learners

m Two-step analysis from a set of code to a set of clusters

m Distance matrix between codes via plagiarism detection

m Cluster of codes via clustering
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Clusters

m Each obtained cluster represents an error class

Contains a “central” member which is the representative

m Several possible clusters given different configurations

Automatically adjusted or manually by the teacher



Feedback generation

m Association of one feedback for each representative (m)
Characterizing the error class represented by the cluster ()

m Distances between new code (o) and representatives

Feedback of the nearest is chosen, if proximity close enough
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Experiments

m Prototype of the analysis framework to perform experiments

Developed with the R programming language

m Codes extracted from the Code Hunt dataset

Used 53 G# submissions from Sector_Level6

m Tools used for the analysis framework

m Code plagiarism detection tool: JPlag

m Clustering: k-medoids, Agglomerative Hierarchical Clustering
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JPlag

m Two configuration items to setup

m Programming language: C#

m Sensitivity: greatest sensitivity since codes are short

m Distance matrix dist(i,j) = max_possible_similarity — similarity

Language accepted: C# 1.2 Parser
Command line: -1 c#-1.2 -t 1 *path to code filesx*
initialize ok
*n* submissions
Parsing Error in *file_1x:
*file_1%: *error_namex*

*m* submissions parsed successfully!
*n-m* parser errors!
Comparing *file_1*-*file_2%: *similarity=*

Comparing *file_n-1*-xfile_m*: *similarity*

11



k-medoids

m The medoid of each cluster is chosen as its centre

That is the member closest to all the other ones

m Requires the number of clusters to be chosen a priori

m Chosen by the teachers before launching the analysis

m Automatically chosen to optimise a function of interest

m Increasing k until convergence of reconstruction error

Sum of distances between elements and their medoid
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Hierarchical Agglomerative Clustering

m Incrementally build clusters from bottom to top

Starts with one cluster for each element

m At each step, merge the two closest clusters

Ward’s min. variance favour compact and spherical clusters

m Several advantages compared to k-medoids approach

m Number of clusters should not be selected a priori

m Generation of a dendrogram to select the desired clusters
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Experiment #1

m k-medoids with k = 4 provides a good classification

Body with one or two instructions
Codes using the switch statement
Fibonacci, char procesing, using if and for statements

Seven different trends

m Increasing k correctly splits the clusters further

Observed trends in the codes are correctly separated
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using System;

public class Program {
public static string Puzzle(string s) {
char[] x = s.ToCharArray();
int f£1 = 1, £2 = 1, t;
for (int i = 0; i < s.Length; i++) {

x[i] = (x[i] - ’a’ + f2) % 26 + ’a’;
t = f1;

f1 += £2; f1 %= 26;

f2 = t;

}

return new string(x);

using System;

public class Program {
public static string Puzzle(string s) {

char[] x = s.ToCharArray();
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using System;

public class Program {
public static string Puzzle(string s) {
char[] x = s.ToCharArray();
int f1 =1, f2 =1, t;
for (int i = 0; i < s.Length; i++) {

x[i] = (x[i] - ’a’ + £2) % 26 + ’a’;
t = f1;

f1 += £2; f1 %= 26;

f2 = t;
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return new string(x);

using System;

public class Program {
public static string Puzzle(string s) {
char[] arr = s.ToCharArray();
uint fibim2 = 0, fibiml = 0, fibi = 1;
for(int i=0;i<arr.Length;++i){

uint newchar = fibi % 26;
if (arr [i] + newchar > ’z’)

arr[i] = arr[i] + newchar - ’z’ + ’a’ - 1;
else

arr[i] = (char) (arr[i] + newchar);

fibim2 = fibimil;
fibiml = fibi;
fibi = fibiml + fibim2;
}
return new string(arr);
}
}




Experiment #2

m Hierarchical Agglomerative provides a good classification

Code from the same ideal cluster are together
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Evaluation (1)

m Quality evaluation with a manual reference clustering

Measuring the distance from the ideal clustering

m Score of a clustering between 0 and 1

A score of 1 means that the clusters are exactly the same

18



Evaluation (2)

0 s ® = » : 0 s
k-medoids Hierarchical Agglomerative
with k =11 with h =10
— score = 0.9 — score = 0.91
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Conclusion (1)

Analysis framework to generate feedback for learning

m Offline analysis of error classes for teachers

m On-the-fly analysis to generate feedback for learners
m Measure of code similarity with code plagiarism detection

m Error classes identification with clustering

Preliminary experiments are promising
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Conclusion (2)

m More experiments have to be performed

With Code Hunt datasets and others

m Automatic selection of the number of clusters

Finding criterion function to evaluate a set of clusters

m Using the framework with codes that do not compile

Replace code plagiarism detection tools

m Evaluation of false positive and wrong feedbacks

Could the learner be surprised with a non relevant feedback
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